Switch to: References

Add citations

You must login to add citations.
  1. Organization needs organization: Understanding integrated control in living organisms.Leonardo Bich & William Bechtel - 2022 - Studies in History and Philosophy of Science Part A 93:96-106.
    Organization figures centrally in the understanding of biological systems advanced by both new mechanists and proponents of the autonomy framework. The new mechanists focus on how components of mechanisms are organized to produce a phenomenon and emphasize productive continuity between these components. The autonomy framework focuses on how the components of a biological system are organized in such a way that they contribute to the maintenance of the organisms that produce them. In this paper we analyze and compare these two (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Laws of Nature as Constraints.Emily Adlam - 2022 - Foundations of Physics 52 (1):1-41.
    The laws of nature have come a long way since the time of Newton: quantum mechanics and relativity have given us good reasons to take seriously the possibility of laws which may be non-local, atemporal, ‘all-at-once,’ retrocausal, or in some other way not well-suited to the standard dynamical time evolution paradigm. Laws of this kind can be accommodated within a Humean approach to lawhood, but many extant non-Humean approaches face significant challenges when we try to apply them to laws outside (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Control Mechanisms: Explaining the Integration and Versatility of Biological Organisms.Leonardo Bich & William Bechtel - 2022 - Adaptive Behavior.
    Living organisms act as integrated wholes to maintain themselves. Individual actions can each be explained by characterizing the mechanisms that perform the activity. But these alone do not explain how various activities are coordinated and performed versatilely. We argue that this depends on a specific type of mechanism, a control mechanism. We develop an account of control by examining several extensively studied control mechanisms operative in the bacterium E. coli. On our analysis, what distinguishes a control mechanism from other mechanisms (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Mechanism, autonomy and biological explanation.Leonardo Bich & William Bechtel - 2021 - Biology and Philosophy 36 (6):1-27.
    The new mechanists and the autonomy approach both aim to account for how biological phenomena are explained. One identifies appeals to how components of a mechanism are organized so that their activities produce a phenomenon. The other directs attention towards the whole organism and focuses on how it achieves self-maintenance. This paper discusses challenges each confronts and how each could benefit from collaboration with the other: the new mechanistic framework can gain by taking into account what happens outside individual mechanisms, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Active biological mechanisms: transforming energy into motion in molecular motors.William Bechtel & Andrew Bollhagen - 2021 - Synthese 199 (5-6):12705-12729.
    Unless one embraces activities as foundational, understanding activities in mechanisms requires an account of the means by which entities in biological mechanisms engage in their activities—an account that does not merely explain activities in terms of more basic entities and activities. Recent biological research on molecular motors exemplifies such an account, one that explains activities in terms of free energy and constraints. After describing the characteristic “stepping” activities of these molecules and mapping the stages of those steps onto the stages (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Naturalización de la Metafísica Modal.Carlos Romero - 2021 - Dissertation, National Autonomous University of Mexico
    ⦿ In my dissertation I introduce, motivate and take the first steps in the implementation of, the project of naturalising modal metaphysics: the transformation of the field into a chapter of the philosophy of science rather than speculative, autonomous metaphysics. -/- ⦿ In the introduction, I explain the concept of naturalisation that I apply throughout the dissertation, which I argue to be an improvement on Ladyman and Ross' proposal for naturalised metaphysics. I also object to Williamson's proposal that modal metaphysics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • How is cancer complex?Anya Plutynski - 2021 - European Journal for Philosophy of Science 11 (2):1-30.
    Cancer is typically spoken of as a “complex” disease. But, in what sense are cancers “complex”? Is there one sense, or several? What implications does this complexity have – both for how we study, and how we intervene upon cancers? The aim of this paper is first, to clarify the variety of senses in which cancer is spoken of as "complex" in the scientific literature, and second, to discover what explanatory and predictive roles such features play.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Grounding cognition: heterarchical control mechanisms in biology.William Bechtel & Leonardo Bich - 2021 - Philosophical Transactions of the Royal Society B: Biological Sciences 376 (1820).
    We advance an account that grounds cognition, specifically decision-making, in an activity all organisms as autonomous systems must perform to keep themselves viable—controlling their production mechanisms. Production mechanisms, as we characterize them, perform activities such as procuring resources from their environment, putting these resources to use to construct and repair the organism's body and moving through the environment. Given the variable nature of the environment and the continual degradation of the organism, these production mechanisms must be regulated by control mechanisms (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Philosophy of Cell Biology.William Bechtel & Andrew Bollhagen - 2019 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Mechanistic and Normative Structure of Agency.Jason Winning - 2019 - Dissertation, University of California San Diego
    I develop an interdisciplinary framework for understanding the nature of agents and agency that is compatible with recent developments in the metaphysics of science and that also does justice to the mechanistic and normative characteristics of agents and agency as they are understood in moral philosophy, social psychology, neuroscience, robotics, and economics. The framework I develop is internal perspectivalist. That is to say, it counts agents as real in a perspective-dependent way, but not in a way that depends on an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Organisms, activity, and being: on the substance of process ontology.Christopher J. Austin - 2020 - European Journal for Philosophy of Science 10 (2):1-21.
    According to contemporary ‘process ontology’, organisms are best conceptualised as spatio-temporally extended entities whose mereological composition is fundamentally contingent and whose essence consists in changeability. In contrast to the Aristotelian precepts of classical ‘substance ontology’, from the four-dimensional perspective of this framework, the identity of an organism is grounded not in certain collections of privileged properties, or features which it could not fail to possess, but in the succession of diachronic relations by which it persists, or ‘perdures’ as one entity (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Being Emergence vs. Pattern Emergence: Complexity, Control, and Goal-Directedness in Biological Systems.Jason Winning & William Bechtel - 2018 - In Sophie Gibb, Robin Findlay Hendry & Tom Lancaster (eds.), The Routledge Handbook of Philosophy of Emergence. New York: Routledge. pp. 134-144.
    Emergence is much discussed by both philosophers and scientists. But, as noted by Mitchell (2012), there is a significant gulf; philosophers and scientists talk past each other. We contend that this is because philosophers and scientists typically mean different things by emergence, leading us to distinguish being emergence and pattern emergence. While related to distinctions offered by others between, for example, strong/weak emergence or epistemic/ontological emergence (Clayton, 2004, pp. 9–11), we argue that the being vs. pattern distinction better captures what (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Genidentity and Biological Processes.Thomas Pradeu - 2018 - In Daniel J. Nicholson & John Dupré (eds.), Everything Flows: Towards a Processual Philosophy of Biology. Oxford, United Kingdom: Oxford University Press.
    A crucial question for a process view of life is how to identify a process and how to follow it through time. The genidentity view can contribute decisively to this project. It says that the identity through time of an entity X is given by a well-identified series of continuous states of affairs. Genidentity helps address the problem of diachronic identity in the living world. This chapter describes the centrality of the concept of genidentity for David Hull and proposes an (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Scale Dependency and Downward Causation in Biology.Sara Green - 2018 - Philosophy of Science 85 (5):998-1011.
    This paper argues that scale-dependence of physical and biological processes offers resistance to reductionism and has implications that support a specific kind of downward causation. I demonstrate how insights from multiscale modeling can provide a concrete mathematical interpretation of downward causation as boundary conditions for models used to represent processes at lower scales. The autonomy and role of macroscale parameters and higher-level constraints are illustrated through examples of multiscale modeling in physics, developmental biology, and systems biology. Drawing on these examples, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Empirical moral rationalism and the social constitution of normativity.Joseph Jebari - 2019 - Philosophical Studies 176 (9):2429-2453.
    Moral rationalism has long been an attractive position within moral philosophy. However, among empirical-minded philosophers, it is widely dismissed as scientifically untenable. In this essay, I argue that moral rationalism’s lack of uptake in the empirical domain is due to the widespread supposition that moral rationalists must hold that moral judgments and actions are produced by rational capacities. But this construal is mistaken: moral rationalism’s primary concern is not with the relationship between moral judgments and rational capacities per se, but (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Systems and organizations: Theoretical tools, conceptual distinctions and epistemological implications.Bich Leonardo - 2016 - In Gianfranco Minati, Mario Abram & Eliano Pessa (eds.), Towards a post-Bertalanffy systemics. Springers. pp. 203-209.
    The aim of this paper is to present some system-theoretical notions ─ such as constraint, closure, integration, coordination, etc. ─ which have recently raised a renovated interest and have undergone a deep development, especially in those branches of philosophy of biology characterized by a systemic approach. The im- plications of these notions for the analysis and characterization of self-maintaining organizations will be discussed with the aid of examples taken from models of minimal living systems, and some conceptual distinctions will be (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Abstractions and Implementations.Russ Abbott - manuscript
    Fundamental to Computer Science is the distinction between abstractions and implementations. When that distinction is applied to various philosophical questions it yields the following conclusions. -/- • EMERGENCE. It isn’t as mysterious as it’s made out to be; the possibility of strong emergence is not a threat to science. -/- • INTERACTIONS BETWEEN HIGHER-LEVEL ENTITIES. Physical interaction among higher-level entities is illusory. Abstract interactions are the source of emergence, new domains of knowledge, and complex systems. -/- • PHYSICS and the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • ¿Más es diferente, o es más de lo mismo? Introducción al debate contemporáneo sobre emergencia y reduccionismo.Aldo Filomeno, Carlos Romero & José Jerez - 2024 - Revista de Humanidades de Valparaíso (25):3-18.
    Como introducción al monográfico sobre reduccionismo y emergencia brindamos aquí un contexto teórico al debate contemporáneo. Hablaremos primero del acercamiento naturalista en filosofía (§2), así como de dos de las características más importantes de la emergencia: autonomía y universalidad (§3). Finalmente, basándonos en la literatura contemporánea (principalmente en Patricia Palacios y Jessica Wilson, además de Mario Bunge y Alicia Juarrero) presentamos algunas de las definiciones y distinciones más importantes para entender mejor el debate sobre la emergencia (§4).
    Download  
     
    Export citation  
     
    Bookmark  
  • Organisms Need Mechanisms; Mechanisms Need Organisms.William Bechtel & Leonardo Bich - 2023 - In João L. Cordovil, Gil Santos & Davide Vecchi (eds.), New Mechanism Explanation, Emergence and Reduction. Springer. pp. 85-108.
    According to new mechanists, mechanisms explain how specific biological phenomena are produced. New mechanists have had little to say about how mechanisms relate to the organism in which they reside. A key feature of organisms, emphasized by the autonomy tradition, is that organisms maintain themselves. To do this, they rely on mechanisms. But mechanisms must be controlled so that they produce the phenomena for which they are responsible when and in the manner needed by the organism. To account for how (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Levels in Biological Organisms: Hierarchy of Production Mechanisms, Heterarchy of Control Mechanisms.William Bechtel - 2022 - The Monist 105 (2):156-174.
    Among the notions of levels invoked in accounts of biological phenomena, I focus on two: levels of production mechanisms and levels of control mechanisms. I argue that these two notions of level exhibit different characteristics: production mechanisms are organized hierarchically while control mechanisms are often organized heterarchically. I illustrate the differences in these modes of organization by examining production and control mechanisms involved in cell division in Escherichia coli and in circulation of blood in mammals. I conclude by exploring how (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Typicality of Dynamics and the Laws of Nature.Aldo Filomeno - 2023 - In Cristián Soto (ed.), Current Debates in Philosophy of Science: In Honor of Roberto Torretti. Springer Verlag.
    Certain results, most famously in classical statistical mechanics and complex systems, but also in quantum mechanics and high-energy physics, yield a coarse-grained stable statistical pattern in the long run. The explanation of these results shares a common structure: the results hold for a 'typical' dynamics, that is, for most of the underlying dynamics. In this paper I argue that the structure of the explanation of these results might shed some light --a different light-- on philosophical debates on the laws of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Importance of Constraints and Control in Biological Mechanisms: Insights from Cancer Research.William Bechtel - 2018 - Philosophy of Science 85 (4):573-593.
    Research on diseases such as cancer reveals that primary mechanisms, which have been the focus of study by the new mechanists in philosophy of science, are often subject to control by other mechanisms. Cancer cells employ the same primary mechanisms as healthy cells but control them differently. I use cancer research to highlight just how widespread control is in individual cells. To provide a framework for understanding control, I reconceptualize mechanisms as imposing constraints on flows of free energy, with control (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Biology meets Physics: Reductionism and Multi-scale Modeling of Morphogenesis.Sara Green & Robert Batterman - 2017 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 7161:20-34.
    A common reductionist assumption is that macro-scale behaviors can be described "bottom-up" if only sufficient details about lower-scale processes are available. The view that an "ideal" or "fundamental" physics would be sufficient to explain all macro-scale phenomena has been met with criticism from philosophers of biology. Specifically, scholars have pointed to the impossibility of deducing biological explanations from physical ones, and to the irreducible nature of distinctively biological processes such as gene regulation and evolution. This paper takes a step back (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • From objectivized morality to objective morality.Joseph Jebari & Bryce Huebner - 2018 - Behavioral and Brain Sciences 41.
    Download  
     
    Export citation  
     
    Bookmark  
  • Rethinking Causality in Biological and Neural Mechanisms: Constraints and Control.Jason Winning & William Bechtel - 2018 - Minds and Machines 28 (2).
    Existing accounts of mechanistic causation are not suited for understanding causation in biological and neural mechanisms because they do not have the resources to capture the unique causal structure of control heterarchies. In this paper, we provide a new account on which the causal powers of mechanisms are grounded by time-dependent, variable constraints. Constraints can also serve as a key bridge concept between the mechanistic approach to explanation and underappreciated work in theoretical biology that sheds light on how biological systems (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Explicating Top-­‐Down Causation Using Networks and Dynamics.William Bechtel - 2017 - Philosophy of Science 84 (2):253-274.
    In many fields in the life sciences investigators refer to downward or top-down causal effects. Craver and Bechtel defended the view that such cases should be understood in terms of a constitution relation between levels in a mechanism and causation as solely an intra-level relation. Craver and Bechtel, however, provided insufficient specification as to when entities constitute a higher-level mechanism. In this paper I appeal to graph-theoretic representations of networks that are now widely employed in systems biology and neuroscience to (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Tracers in neuroscience: Causation, constraints, and connectivity.Lauren N. Ross - 2021 - Synthese 199 (1-2):4077-4095.
    This paper examines tracer techniques in neuroscience, which are used to identify neural connections in the brain and nervous system. These connections capture a type of “structural connectivity” that is expected to inform our understanding of the functional nature of these tissues. This is due to the fact that neural connectivity constrains the flow of signal propagation, which is a type of causal process in neurons. This work explores how tracers are used to identify causal information, what standards they are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (2 other versions)Mechanistic Causation and Constraints: Perspectival Parts and Powers, Non-perspectival Modal Patterns.Jason Winning - 2020 - British Journal for the Philosophy of Science 71 (4):1385-1409.
    Any successful account of the metaphysics of mechanistic causation must satisfy at least five key desiderata. In this article, I lay out these five desiderata and explain why existing accounts of the metaphysics of mechanistic causation fail to satisfy them. I then present an alternative account that does satisfy the five desiderata. According to this alternative account, we must resort to a type of ontological entity that is new to metaphysics, but not to science: constraints. In this article, I explain (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Upward and Downward Causation from a Relational-Horizontal Ontological Perspective.Gil C. Santos - 2014 - Axiomathes 25 (1):23-40.
    Downward causation exercised by emergent properties of wholes upon their lower-level constituents’ properties has been accused of conceptual and metaphysical incoherence. Only upward causation is usually peacefully accepted. The aim of this paper is to criticize and refuse the traditional hierarchical-vertical way of conceiving both types of causation, although preserving their deepest ontological significance, as well as the widespread acceptance of the traditional atomistic-combinatorial view of the entities and the relations that constitute the so-called ‘emergence base’. Assuming those two perspectives (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Constraints Shape Cell Function and Morphology by Canalizing the Developmental Path along the Waddington's Landscape.Mariano Bizzarri, Alessandro Giuliani, Mirko Minini, Noemi Monti & Alessandra Cucina - 2020 - Bioessays 42 (4):1900108.
    Studies performed in absence of gravitational constraint show that a living system is unable to choose between two different phenotypes, thus leading cells to segregate into different, alternative stable states. This finding demonstrates that the genotype does not determine by itself the phenotype but requires additional, physical constraints to finalize cell differentiation. Constraints belong to two classes: holonomic (independent of the system's dynamical states, as being established by the space‐time geometry of the field) and non‐holonomic (modified during those biological processes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Constraint-based reasoning in cell biology: on the explanatory role of context.Karl S. Matlin & Sara Green - 2024 - History and Philosophy of the Life Sciences 46 (3):1-26.
    Cell biologists, including those seeking molecular mechanistic explanations of cellular phenomena, frequently rely on experimental strategies focused on identifying the cellular context relevant to their investigations. We suggest that such practices can be understood as a guided decomposition strategy, where molecular explanations of phenomena are defined in relation to natural contextual (cell) boundaries. This “top-down” strategy contrasts with “bottom-up” reductionist approaches where well-defined molecular structures and activities are orphaned by their displacement from actual biological functions. We focus on the central (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Understanding HPS paradigms through Galison’s problems.Cliff Hooker - 2022 - Axiomathes 32 (6):931-956.
    In an Isis 2008 review of research in History and Philosophy of Science (HPS), Galison opened discussion on ten on-going HPS problems. It is however unclear to what extent these problems, and constraints on their solutions, are of HPS’s own making. Recent research provides a basic resolution of these issues. In a recent paper Hooker (Perspect Sci 26(2): 266–291, 2018b) proposed that the discipline(s) of HPS should themselves also be understood to employ paradigms in HPS to understand science, analogously to (...)
    Download  
     
    Export citation  
     
    Bookmark