Switch to: Citations

Add references

You must login to add references.
  1. How to teach special relativity.John S. Bell - 1976 - Progress in Scientific Culture 1.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Foundations of Space-Time Theories.Micheal Friedman - 1983 - Princeton University Press.
    Download  
     
    Export citation  
     
    Bookmark   252 citations  
  • (1 other version)Speakable and unspeakable in quantum mechanics: collected papers on quantum philosophy.John Stewart Bell - 2004 - New York: Cambridge University Press.
    This book comprises all of John Bell's published and unpublished papers in the field of quantum mechanics, including two papers that appeared after the first edition was published. It also contains a preface written for the first edition, and an introduction by Alain Aspect that puts into context Bell's great contribution to the quantum philosophy debate. One of the leading expositors and interpreters of modern quantum theory, John Bell played a major role in the development of our current understanding of (...)
    Download  
     
    Export citation  
     
    Bookmark   391 citations  
  • What price spacetime substantivalism? The hole story.John Earman & John Norton - 1987 - British Journal for the Philosophy of Science 38 (4):515-525.
    Spacetime substantivalism leads to a radical form of indeterminism within a very broad class of spacetime theories which include our best spacetime theory, general relativity. Extending an argument from Einstein, we show that spacetime substantivalists are committed to very many more distinct physical states than these theories' equations can determine, even with the most extensive boundary conditions.
    Download  
     
    Export citation  
     
    Bookmark   275 citations  
  • Dialogue concerning the Two Chief World Systems.Galileo Galilei & Stillman Drake - 1954 - British Journal for the Philosophy of Science 5 (19):253-256.
    Download  
     
    Export citation  
     
    Bookmark   132 citations  
  • On the reality of space-time geometry and the wavefunction.Jeeva Anandan & Harvey R. Brown - 1995 - Foundations of Physics 25 (2):349--60.
    The action-reaction principle (AR) is examined in three contexts: (1) the inertial-gravitational interaction between a particle and space-time geometry, (2) protective observation of an extended wave function of a single particle, and (3) the causal-stochastic or Bohm interpretation of quantum mechanics. A new criterion of reality is formulated using the AR principle. This criterion implies that the wave function of a single particle is real and justifies in the Bohm interpretation the dual ontology of the particle and its associated wave (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Relativity and geometry.Roberto Torretti - 1983 - New York: Dover Publications.
    This high-level study discusses Newtonian principles and 19th-century views on electrodynamics and the aether. Additional topics include Einstein's electrodynamics of moving bodies, Minkowski spacetime, gravitational geometry, time and causality, and other subjects. Highlights include a rich exposition of the elements of the special and general theories of relativity.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Light-speed constancy versus light-speed invariance in the derivation of relativistic kinematics.Harvey R. Brown & Adolfo Maia - 1993 - British Journal for the Philosophy of Science 44 (3):381-407.
    It is still perhaps not widely appreciated that in 1905 Einstein used his postulate concerning the ‘constancy’ of the light-speed in the ‘resting’ frame, in conjunction with the principle of relativity, to derive numerical light-speed invariance. Now a ‘weak’ version of the relativity principle (or, alternatively, appeal to the Michelson—Morley experiment) leads from Einstein's light postulate to a condition that we call universal light-speed constancy. which is weaker than light-speed invariance. It follows from earlier independent investigations (Robertson [1949]; Steigler [1952]; (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Über den physikalischen sinn der relativitätspostulate.E. Kretschmann - 1917 - Annalen Der Physik 53:575--614.
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • (2 other versions)Albert Einstein: Philosopher-Scientist.Stephen Toulmin - 1950 - Science and Society 14 (4):353-360.
    Download  
     
    Export citation  
     
    Bookmark   152 citations  
  • Decoherence in unorthodox formulations of quantum mechanics.Vassilios Karakostas & Michael Dickson - 1995 - Synthese 102 (1):61 - 97.
    The conceptual structure of orthodox quantum mechanics has not provided a fully satisfactory and coherent description of natural phenomena. With particular attention to the measurement problem, we review and investigate two unorthodox formulations. First, there is the model advanced by GRWP, a stochastic modification of the standard Schrödinger dynamics admitting statevector reduction as a real physical process. Second, there is the ontological interpretation of Bohm, a causal reformulation of the usual theory admitting no collapse of the statevector. Within these two (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Correspondence, invariance and heuristics in the emergence of special relativity.Harvey R. Brown - 1993 - In S. French & H. Kamminga (eds.), Correspondence, Invariance and Heuristics: Essays in Honour of Heinz Post. Dordrecht: Reidel. pp. 227--60.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Galilean Relativity and Galileo's Relativity.Alan Chalmers - 1993 - In S. French & H. Kamminga (eds.), Correspondence, Invariance and Heuristics: Essays in Honour of Heinz Post. Dordrecht: Reidel. pp. 189--205.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Relativity, the theory and its philosophy.Roger B. Angel - 1980 - New York: Pergamon Press.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Coordinates and covariance: Einstein's view of space-time and the modern view. [REVIEW]John Norton - 1989 - Foundations of Physics 19 (10):1215-1263.
    Where modern formulations of relatively theory use differentiable manifolds to space-time, Einstein simply used open sets of R 4 , following the then current methods of differential geometry. This fact aids resolution of a number of outstanding puzzles concerning Einstein's use of coordinate systems and covariance principles, including the claimed physical significance of covariance principles, their connection to relativity principles, Einstein's apparent confusion of coordinate systems and frames of reference, and his failure to distinguish active and passive transformations, especially in (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Einstein Versus Bohr: The Continuing Controversies in Physics.Elie Zahar - 1988 - Open Court Publishing Company.
    Einstein Versus Bohr is unlike other books on science written by experts for non-experts, because it presents the history of science in terms of problems, conflicts, contradictions, and arguments. Science normally "keeps a tidy workshop." Professor Sachs breaks with convention by taking us into the theoretical workshop, giving us a problem-oriented account of modern physics, an account that concentrates on underlying concepts and debate. The book contains mathematical explanations, but it is so-designed that the whole argument can be followed with (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations