Switch to: Citations

Add references

You must login to add references.
  1. Thermodynamic asymmetry in time.Craig Callender - 2006 - Stanford Encyclopedia of Philosophy.
    Thermodynamics is the science that describes much of the time asymmetric behavior found in the world. This entry's first task, consequently, is to show how thermodynamics treats temporally ‘directed’ behavior. It then concentrates on the following two questions. (1) What is the origin of the thermodynamic asymmetry in time? In a world possibly governed by time symmetric laws, how should we understand the time asymmetric laws of thermodynamics? (2) Does the thermodynamic time asymmetry explain the other temporal asymmetries? Does it (...)
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • The Structure of a Quantum World.Jill North - 2013 - In Alyssa Ney & David Albert (eds.), The Wave Function: Essays on the Metaphysics of Quantum Mechanics. Oxford University Press. pp. 184-202.
    I argue that the fundamental space of a quantum mechanical world is the wavefunction's space. I argue for this using some very general principles that guide our inferences to the fundamental nature of a world, for any fundamental physical theory. I suggest that ordinary three-dimensional space exists in such a world, but is non-fundamental; it emerges from the fundamental space of the wavefunction.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • On the approach to thermal equilibrium of macroscopic quantum systems.Sheldon Goldstein & Roderich Tumulka - unknown
    We consider an isolated, macroscopic quantum system. Let H be a microcanonical “energy shell,” i.e., a subspace of the system’s Hilbert space spanned by the (finitely) many energy eigenstates with energies between E and E + δE. The thermal equilibrium macro-state at energy E corresponds to a subspace Heq of H such that dim Heq/ dim H is close to 1. We say that a system with state vector ψ H is in thermal equilibrium if ψ is “close” to Heq. (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Normal typicality and Von Neumann's quantum ergodic theorem.Sheldon Goldstein & Roderich Tumulka - unknown
    We discuss the content and significance of John von Neumann’s quantum ergodic theorem (QET) of 1929, a strong result arising from the mere mathematical structure of quantum mechanics. The QET is a precise formulation of what we call normal typicality, i.e., the statement that, for typical large systems, every initial wave function ψ0 from an energy shell is “normal”: it evolves in such a way that |ψt ψt| is, for most t, macroscopically equivalent to the micro-canonical density matrix. The QET (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Physics and Chance.Lawrence Sklar - 1995 - British Journal for the Philosophy of Science 46 (1):145-149.
    Statistical mechanics is one of the crucial fundamental theories of physics, and in his new book Lawrence Sklar, one of the pre-eminent philosophers of physics, offers a comprehensive, non-technical introduction to that theory and to attempts to understand its foundational elements. Among the topics treated in detail are: probability and statistical explanation, the basic issues in both equilibrium and non-equilibrium statistical mechanics, the role of cosmology, the reduction of thermodynamics to statistical mechanics, and the alleged foundation of the very notion (...)
    Download  
     
    Export citation  
     
    Bookmark   148 citations  
  • Time in Thermodynamics.Jill North - 2011 - In Criag Callender (ed.), The Oxford Handbook of Philosophy of Time. Oxford University Press. pp. 312--350.
    Or better: time asymmetry in thermodynamics. Better still: time asymmetry in thermodynamic phenomena. “Time in thermodynamics” misleadingly suggests that thermodynamics will tell us about the fundamental nature of time. But we don’t think that thermodynamics is a fundamental theory. It is a theory of macroscopic behavior, often called a “phenomenological science.” And to the extent that physics can tell us about the fundamental features of the world, including such things as the nature of time, we generally think that only fundamental (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Boltzmann's Approach to Statistical Mechanics.Sheldon Goldstein - unknown
    In the last quarter of the nineteenth century, Ludwig Boltzmann explained how irreversible macroscopic laws, in particular the second law of thermodynamics, originate in the time-reversible laws of microscopic physics. Boltzmann’s analysis, the essence of which I shall review here, is basically correct. The most famous criticisms of Boltzmann’s later work on the subject have little merit. Most twentieth century innovations – such as the identification of the state of a physical system with a probability distribution on its phase space, (...)
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • An Intrinsic Theory of Quantum Mechanics: Progress in Field's Nominalistic Program, Part I.Eddy Keming Chen - manuscript
    In this paper, I introduce an intrinsic account of the quantum state. This account contains three desirable features that the standard platonistic account lacks: (1) it does not refer to any abstract mathematical objects such as complex numbers, (2) it is independent of the usual arbitrary conventions in the wave function representation, and (3) it explains why the quantum state has its amplitude and phase degrees of freedom. -/- Consequently, this account extends Hartry Field’s program outlined in Science Without Numbers (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Primitive Ontology and the Structure of Fundamental Physical Theories.Valia Allori - 2013 - In Alyssa Ney & David Z. Albert (eds.), The Wave Function: Essays in the Metaphysics of Quantum Mechanics. Oxford University Press. pp. 58-75.
    For a long time it was believed that it was impossible to be realist about quantum mechanics. It took quite a while for the researchers in the foundations of physics, beginning with John Stuart Bell [Bell 1987], to convince others that such an alleged impossibility had no foundation. Nowadays there are several quantum theories that can be interpreted realistically, among which Bohmian mechanics, the GRW theory, and the many-worlds theory. The debate, though, is far from being over: in what respect (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Typicality and Notions of Probability in Physics.Sheldon Goldstein - 2012 - In Yemima Ben-Menahem & Meir Hemmo (eds.), Probability in Physics. Springer. pp. 59--71.
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, there are two (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Quantum States of a Time-Asymmetric Universe: Wave Function, Density Matrix, and Empirical Equivalence.Eddy Keming Chen - 2019 - Dissertation, Rutgers University - New Brunswick
    What is the quantum state of the universe? Although there have been several interesting suggestions, the question remains open. In this paper, I consider a natural choice for the universal quantum state arising from the Past Hypothesis, a boundary condition that accounts for the time-asymmetry of the universe. The natural choice is given not by a wave function but by a density matrix. I begin by classifying quantum theories into two types: theories with a fundamental wave function and theories with (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the Origins of the Arrow of Time: Why There is Still a Puzzle about the Low Entropy Past.Huw Price - 2004 - In Christopher Hitchcock (ed.), Contemporary Debates in Philosophy of Science. Blackwell. pp. 219--239.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • The Intrinsic Structure of Quantum Mechanics.Eddy Keming Chen - 2019 - In Essays on the Metaphysics of Quantum Mechanics. New Brunswick, NJ: PhD dissertation, Rutgers University. pp. Chapter 1.
    The wave function in quantum mechanics presents an interesting challenge to our understanding of the physical world. In this paper, I show that the wave function can be understood as four intrinsic relations on physical space. My account has three desirable features that the standard account lacks: it does not refer to any abstract mathematical objects, it is free from the usual arbitrary conventions, and it explains why the wave function has its gauge degrees of freedom, something that are usually (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Reality and the role of the wave function in quantum theory.Sheldon Goldstein & Nino Zanghi - unknown
    The most puzzling issue in the foundations of quantum mechanics is perhaps that of the status of the wave function of a system in a quantum universe. Is the wave function objective or subjective? Does it represent the physical state of the system or merely our information about the system? And if the former, does it provide a complete description of the system or only a partial description? We shall address these questions here mainly from a Bohmian perspective, and shall (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • The Emperor’s New Mind: Concerning Computers, Minds, andthe Laws of Physics.Roger Penrose - 1989 - Science and Society 54 (4):484-487.
    Download  
     
    Export citation  
     
    Bookmark   396 citations  
  • Quantum Equilibrium and the Origin of Absolute Uncertainty.Detlef Durr, Sheldon Goldstein & Nino Zanghi - 1992 - Journal of Statistical Physics 67:843-907.
    Download  
     
    Export citation  
     
    Bookmark   169 citations  
  • Time's Arrow and Archimedes' Point: New Directions for the Physics of Time.Huw Price - 1998 - British Journal for the Philosophy of Science 49 (1):135-159.
    Download  
     
    Export citation  
     
    Bookmark   165 citations