Switch to: References

Add citations

You must login to add citations.
  1. Absorbing the Arrow of Electromagnetic Radiation.Mario Hubert & Charles T. Sebens - 2023 - Studies in History and Philosophy of Science Part A 99 (C):10-27.
    We argue that the asymmetry between diverging and converging electromagnetic waves is just one of many asymmetries in observed phenomena that can be explained by a past hypothesis and statistical postulate (together assigning probabilities to different states of matter and field in the early universe). The arrow of electromagnetic radiation is thus absorbed into a broader account of temporal asymmetries in nature. We give an accessible introduction to the problem of explaining the arrow of radiation and compare our preferred strategy (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Interactionist Zombies.Jake Khawaja - 2022 - Synthese 200.
    One of the most popular arguments in favor of dualism is the zombie-conceivability argument. It is often argued that the possibility of zombies would entail that mental properties are epiphenomenal. This paper attempts to defuse the argument, offering a model of dualist mental causation which can serve as a basis for a modified, interactionist-friendly zombie argument.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Two Approaches to Reduction: A Case Study from Statistical Mechanics.Bixin Guo - forthcoming - Philosophy of Science:1-36.
    I argue that there are two distinct approaches to understanding reduction: the ontology-first approach and the theory-first approach. They concern the relation between ontological reduction and inter-theoretic reduction. Further, I argue for the significance of this distinction by demonstrating that either one or the other approach has been taken as an implicit assumption in, and has in fact shaped, our understanding of what statistical mechanics is. More specifically, I argue that the Boltzmannian framework of statistical mechanics assumes and relies on (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Strong Determinism.Eddy Keming Chen - 2024 - Philosophers' Imprint 24 (1).
    A strongly deterministic theory of physics is one that permits exactly one possible history of the universe. In the words of Penrose (1989), "it is not just a matter of the future being determined by the past; the entire history of the universe is fixed, according to some precise mathematical scheme, for all time.” Such an extraordinary feature may appear unattainable in a world like ours. In this paper, I show that it can be achieved in a simple way and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Essays on the Metaphysics of Quantum Mechanics.Eddy Keming Chen - 2019 - Dissertation, Rutgers University, New Brunswick
    What is the proper metaphysics of quantum mechanics? In this dissertation, I approach the question from three different but related angles. First, I suggest that the quantum state can be understood intrinsically as relations holding among regions in ordinary space-time, from which we can recover the wave function uniquely up to an equivalence class (by representation and uniqueness theorems). The intrinsic account eliminates certain conventional elements (e.g. overall phase) in the representation of the quantum state. It also dispenses with first-order (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Governing Without A Fundamental Direction of Time: Minimal Primitivism about Laws of Nature.Eddy Keming Chen & Sheldon Goldstein - 2022 - In Yemima Ben-Menahem (ed.), Rethinking Laws of Nature. Springer. pp. 21-64.
    The Great Divide in metaphysical debates about laws of nature is between Humeans, who think that laws merely describe the distribution of matter, and non-Humeans, who think that laws govern it. The metaphysics can place demands on the proper formulations of physical theories. It is sometimes assumed that the governing view requires a fundamental / intrinsic direction of time: to govern, laws must be dynamical, producing later states of the world from earlier ones, in accord with the fundamental direction of (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Understanding Physics: ‘What?’, ‘Why?’, and ‘How?’.Mario Hubert - 2021 - European Journal for Philosophy of Science 11 (3):1-36.
    I want to combine two hitherto largely independent research projects, scientific understanding and mechanistic explanations. Understanding is not only achieved by answering why-questions, that is, by providing scientific explanations, but also by answering what-questions, that is, by providing what I call scientific descriptions. Based on this distinction, I develop three forms of understanding: understanding-what, understanding-why, and understanding-how. I argue that understanding-how is a particularly deep form of understanding, because it is based on mechanistic explanations, which answer why something happens in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Time's arrow and self‐locating probability.Eddy Keming Chen - 2021 - Philosophy and Phenomenological Research 105 (3):533-563.
    One of the most difficult problems in the foundations of physics is what gives rise to the arrow of time. Since the fundamental dynamical laws of physics are (essentially) symmetric in time, the explanation for time's arrow must come from elsewhere. A promising explanation introduces a special cosmological initial condition, now called the Past Hypothesis: the universe started in a low-entropy state. Unfortunately, in a universe where there are many copies of us (in the distant ''past'' or the distant ''future''), (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Past Hypothesis and the Nature of Physical Laws.Eddy Keming Chen - 2023 - In Barry Loewer, Brad Weslake & Eric Winsberg (eds.), The Probability Map of the Universe: Essays on David Albert’s _Time and Chance_. Cambridge MA: Harvard University Press. pp. 204-248.
    If the Past Hypothesis underlies the arrows of time, what is the status of the Past Hypothesis? In this paper, I examine the role of the Past Hypothesis in the Boltzmannian account and defend the view that the Past Hypothesis is a candidate fundamental law of nature. Such a view is known to be compatible with Humeanism about laws, but as I argue it is also supported by a minimal non-Humean "governing'' view. Some worries arise from the non-dynamical and time-dependent (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The Cosmic Void.Eddy Keming Chen - 2021 - In Sara Bernstein & Tyron Goldschmidt (eds.), Non-Being: New Essays on the Metaphysics of Nonexistence. Oxford: Oxford University Press.
    What exists at the fundamental level of reality? On the standard picture, the fundamental reality contains (among other things) fundamental matter, such as particles, fields, or even the quantum state. Non-fundamental facts are explained by facts about fundamental matter, at least in part. In this paper, I introduce a non-standard picture called the "cosmic void” in which the universe is devoid of any fundamental material ontology. Facts about tables and chairs are recovered from a special kind of laws that satisfy (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • From Time Asymmetry to Quantum Entanglement: The Humean Unification.Eddy Keming Chen - 2022 - Noûs 56 (1):227-255.
    Two of the most difficult problems in the foundations of physics are (1) what gives rise to the arrow of time and (2) what the ontology of quantum mechanics is. I propose a unified 'Humean' solution to the two problems. Humeanism allows us to incorporate the Past Hypothesis and the Statistical Postulate into the best system, which we then use to simplify the quantum state of the universe. This enables us to confer the nomological status to the quantum state in (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Fundamental Nomic Vagueness.Eddy Keming Chen - 2022 - Philosophical Review 131 (1):1-49.
    If there are fundamental laws of nature, can they fail to be exact? In this paper, I consider the possibility that some fundamental laws are vague. I call this phenomenon 'fundamental nomic vagueness.' I characterize fundamental nomic vagueness as the existence of borderline lawful worlds and the presence of several other accompanying features. Under certain assumptions, such vagueness prevents the fundamental physical theory from being completely expressible in the mathematical language. Moreover, I suggest that such vagueness can be regarded as (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Quantum States of a Time-Asymmetric Universe: Wave Function, Density Matrix, and Empirical Equivalence.Eddy Keming Chen - 2019 - Dissertation, Rutgers University - New Brunswick
    What is the quantum state of the universe? Although there have been several interesting suggestions, the question remains open. In this paper, I consider a natural choice for the universal quantum state arising from the Past Hypothesis, a boundary condition that accounts for the time-asymmetry of the universe. The natural choice is given not by a wave function but by a density matrix. I begin by classifying quantum theories into two types: theories with a fundamental wave function and theories with (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. Singapore: World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, there are two (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Comment on "Mind the Gap: Boltzmannian versus Gibbsian Equilibrium".Dustin Lazarovici - unknown
    In a recent paper, Werndl and Frigg discuss the relationship between the Boltzmannian and Gibbsian framework of statistical mechanics, addressing in particular the question when equilibrium values calculated in both frameworks coincide. In this comment, I point out serious flaws in their work and try to put their results into proper context. I also clarify the concept of Boltzmann equilibrium, the status of the "Khinchin condition" and their connection to the law of large numbers.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast to Wave Function (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Interpretive analogies between quantum and statistical mechanics.C. D. McCoy - 2020 - European Journal for Philosophy of Science 10 (1):9.
    The conspicuous similarities between interpretive strategies in classical statistical mechanics and in quantum mechanics may be grounded on their employment of common implementations of probability. The objective probabilities which represent the underlying stochasticity of these theories can be naturally associated with three of their common formal features: initial conditions, dynamics, and observables. Various well-known interpretations of the two theories line up with particular choices among these three ways of implementing probability. This perspective has significant application to debates on primitive ontology (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Equilibrium in Boltzmannian Statistical Mechanics.Roman Frigg & Charlotte Werndl - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Entropy and Insufficient Reason: A Note on the Judy Benjamin Problem.Anubav Vasudevan - 2020 - British Journal for the Philosophy of Science 71 (3):1113-1141.
    One well-known objection to the principle of maximum entropy is the so-called Judy Benjamin problem, first introduced by van Fraassen. The problem turns on the apparently puzzling fact that, on the basis of information relating an event’s conditional probability, the maximum entropy distribution will almost always assign to the event conditionalized on a probability strictly less than that assigned to it by the uniform distribution. In this article, I present an analysis of the Judy Benjamin problem that can help to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Implementation, Interpretation, and Justification of Likelihoods in Cosmology.C. D. McCoy - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 62:19-35.
    I discuss the formal implementation, interpretation, and justification of likelihood attributions in cosmology. I show that likelihood arguments in cosmology suffer from significant conceptual and formal problems that undermine their applicability in this context.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The “Past Hypothesis”: Not even false.John Earman - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (3):399-430.
    It has become something of a dogma in the philosophy of science that modern cosmology has completed Boltzmann's program for explaining the statistical validity of the Second Law of thermodynamics by providing the low entropy initial state needed to ground the asymmetry in entropic behavior that underwrites our inference about the past. This dogma is challenged on several grounds. In particular, it is argued that it is likely that the Boltzmann entropy of the initial state of the universe is an (...)
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • Probability as typicality.Sérgio B. Volchan - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (4):801-814.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Probability in Physics: Stochastic, Statistical, Quantum.David Wallace - 2014 - In Alastair Wilson (ed.), Chance and Temporal Asymmetry. Oxford: Oxford University Press.
    I review the role of probability in contemporary physics and the origin of probabilistic time asymmetry, beginning with the pre-quantum case but concentrating on quantum theory. I argue that quantum mechanics radically changes the pre-quantum situation and that the philosophical nature of objective probability in physics, and of probabilistic asymmetry in time, is dependent on the correct resolution of the quantum measurement problem.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Arrow of Time in Physics.David Wallace - 2013 - In Adrian Bardon & Heather Dyke (eds.), A Companion to the Philosophy of Time. Malden, MA: Wiley-Blackwell. pp. 262–281.
    Every process studied in any science other than physics defines an arrow of time – to say nothing for the directedness of the processes of causation, inference, memory, control, and counterfactual dependence that occur in everyday life. The discussion in this chapter is confined to the arrow of time as it occurs in physics. The chapter briefly discusses those features of microscopic physics, which seem to conflict with time asymmetry. It explains just how this conflict plays out in the important (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Fundamental physical theories: mathematical structures grounded on a primitive ontology.Valia Allori - 2007 - Dissertation, Rutgers
    In my dissertation I analyze the structure of fundamental physical theories. I start with an analysis of what an adequate primitive ontology is, discussing the measurement problem in quantum mechanics and theirs solutions. It is commonly said that these theories have little in common. I argue instead that the moral of the measurement problem is that the wave function cannot represent physical objects and a common structure between these solutions can be recognized: each of them is about a clear three-dimensional (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Meta-Reversibility Objection.Meacham Christopher - 2023 - In Barry Loewer, Brad Weslake & Eric Winsberg (eds.), The Probability Map of the Universe: Essays on David Albert’s _Time and Chance_. Cambridge MA: Harvard University Press.
    One popular approach to statistical mechanics understands statistical mechanical probabilities as measures of rational indifference. Naive formulations of this ``indifference approach'' face reversibility worries - while they yield the right prescriptions regarding future events, they yield the wrong prescriptions regarding past events. This paper begins by showing how the indifference approach can overcome the standard reversibility worries by appealing to the Past Hypothesis. But, the paper argues, positing a Past Hypothesis doesn't free the indifference approach from all reversibility worries. For (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A new approach to the approach to equilibrium.Roman Frigg & Charlotte Werndl - 2012 - In Yemima Ben-Menahem & Meir Hemmo (eds.), Probability in Physics. Springer. pp. 99-114.
    Consider a gas confined to the left half of a container. Then remove the wall separating the two parts. The gas will start spreading and soon be evenly distributed over the entire available space. The gas has approached equilibrium. Why does the gas behave in this way? The canonical answer to this question, originally proffered by Boltzmann, is that the system has to be ergodic for the approach to equilibrium to take place. This answer has been criticised on different grounds (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Probabilities in Statistical Mechanics.Wayne C. Myrvold - 2016 - In Alan Hájek & Christopher Hitchcock (eds.), The Oxford Handbook of Probability and Philosophy. Oxford: Oxford University Press. pp. 573-600.
    This chapter will review selected aspects of the terrain of discussions about probabilities in statistical mechanics (with no pretensions to exhaustiveness, though the major issues will be touched upon), and will argue for a number of claims. None of the claims to be defended is entirely original, but all deserve emphasis. The first, and least controversial, is that probabilistic notions are needed to make sense of statistical mechanics. The reason for this is the same reason that convinced Maxwell, Gibbs, and (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Demystifying Typicality.Roman Frigg & Charlotte Werndl - 2012 - Philosophy of Science 79 (5):917-929.
    A gas prepared in a non-equilibrium state will approach equilibrium and stay there. An influential contemporary approach to Statistical Mechanics explains this behaviour in terms of typicality. However, this explanation has been criticised as mysterious as long as no connection with the dynamics of the system is established. We take this criticism as our point of departure. Our central claim is that Hamiltonians of gases which are epsilon-ergodic are typical with respect to the Whitney topology. Because equilibrium states are typical, (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Explaining Thermodynamic-Like Behavior in Terms of Epsilon-Ergodicity.Roman Frigg & Charlotte Werndl - 2011 - Philosophy of Science 78 (4):628-652.
    Gases reach equilibrium when left to themselves. Why do they behave in this way? The canonical answer to this question, originally proffered by Boltzmann, is that the systems have to be ergodic. This answer has been criticised on different grounds and is now widely regarded as flawed. In this paper we argue that some of the main arguments against Boltzmann's answer, in particular, arguments based on the KAM-theorem and the Markus-Meyer theorem, are beside the point. We then argue that something (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Contemporary Approaches to Statistical Mechanical Probabilities: A Critical Commentary - Part I: The Indifference Approach.Christopher J. G. Meacham - 2010 - Philosophy Compass 5 (12):1116-1126.
    This pair of articles provides a critical commentary on contemporary approaches to statistical mechanical probabilities. These articles focus on the two ways of understanding these probabilities that have received the most attention in the recent literature: the epistemic indifference approach, and the Lewis-style regularity approach. These articles describe these approaches, highlight the main points of contention, and make some attempts to advance the discussion. The first of these articles provides a brief sketch of statistical mechanics, and discusses the indifference approach (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Chance in Boltzmannian Statistical Mechanics.Roman Frigg - 2008 - Philosophy of Science 75 (5):670-681.
    Consider a gas that is adiabatically isolated from its environment and confined to the left half of a container. Then remove the wall separating the two parts. The gas will immediately start spreading and soon be evenly distributed over the entire available space. The gas has approached equilibrium. Thermodynamics (TD) characterizes this process in terms of an increase of thermodynamic entropy, which attains its maximum value at equilibrium. The second law of thermodynamics captures the irreversibility of this process by positing (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford, GB: Oxford University Press. pp. 115-142.
    Entropy is ubiquitous in physics, and it plays important roles in numerous other disciplines ranging from logic and statistics to biology and economics. However, a closer look reveals a complicated picture: entropy is defined differently in different contexts, and even within the same domain different notions of entropy are at work. Some of these are defined in terms of probabilities, others are not. The aim of this chapter is to arrive at an understanding of some of the most important notions (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Gravity, Entropy, and Cosmology: in Search of Clarity.David Wallace - 2010 - British Journal for the Philosophy of Science 61 (3):513-540.
    I discuss the statistical mechanics of gravitating systems and in particular its cosmological implications, and argue that many conventional views on this subject in the foundations of statistical mechanics embody significant confusion; I attempt to provide a clearer and more accurate account. In particular, I observe that (i) the role of gravity in entropy calculations must be distinguished from the entropy of gravity, that (ii) although gravitational collapse is entropy-increasing, this is not usually because the collapsing matter itself increases in (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • The logic of the past hypothesis.David Wallace - 2023 - In Barry Loewer, Brad Weslake & Eric Winsberg (eds.), The Probability Map of the Universe: Essays on David Albert’s _Time and Chance_. Cambridge MA: Harvard University Press. pp. 76-109.
    I attempt to get as clear as possible on the chain of reasoning by which irreversible macrodynamics is derivable from time-reversible microphysics, and in particular to clarify just what kinds of assumptions about the initial state of the universe, and about the nature of the microdynamics, are needed in these derivations. I conclude that while a “Past Hypothesis” about the early Universe does seem necessary to carry out such derivations, that Hypothesis is not correctly understood as a constraint on the (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • (1 other version)Contemporary debates in philosophy of science.Christopher Hitchcock (ed.) - 2004 - Malden, MA: Blackwell.
    Showcasing original arguments for well-defined positions, as well as clear and concise statements of sophisticated philosophical views, this volume is an ...
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • There Is No Puzzle about the Low Entropy Past.Craig Callender - 2004 - In Christopher Hitchcock (ed.), Contemporary debates in philosophy of science. Malden, MA: Blackwell. pp. 240-255.
    Suppose that God or a demon informs you of the following future fact: despite recent cosmological evidence, the universe is indeed closed and it will have a ‘final’ instant of time; moreover, at that final moment, all 49 of the world’s Imperial Faberge eggs will be in your bedroom bureau’s sock drawer. You’re absolutely certain that this information is true. All of your other dealings with supernatural powers have demonstrated that they are a trustworthy lot.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Time in Thermodynamics.Jill North - 2011 - In Craig Callender (ed.), The Oxford Handbook of Philosophy of Time. Oxford University Press. pp. 312--350.
    Or better: time asymmetry in thermodynamics. Better still: time asymmetry in thermodynamic phenomena. “Time in thermodynamics” misleadingly suggests that thermodynamics will tell us about the fundamental nature of time. But we don’t think that thermodynamics is a fundamental theory. It is a theory of macroscopic behavior, often called a “phenomenological science.” And to the extent that physics can tell us about the fundamental features of the world, including such things as the nature of time, we generally think that only fundamental (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • The quantum measurement problem: State of play.David Wallace - 2008 - In Dean Rickles (ed.), The Ashgate Companion to Contemporary Philosophy of Physics. Ashgate.
    This is a preliminary version of an article to appear in the forthcoming Ashgate Companion to the New Philosophy of Physics.In it, I aim to review, in a way accessible to foundationally interested physicists as well as physics-informed philosophers, just where we have got to in the quest for a solution to the measurement problem. I don't advocate any particular approach to the measurement problem (not here, at any rate!) but I do focus on the importance of decoherence theory to (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Compendium of the foundations of classical statistical physics.Jos Uffink - 2006 - In J. Butterfield & J. Earman (eds.), Handbook of the philosophy of physics. Kluwer Academic Publishers.
    Roughly speaking, classical statistical physics is the branch of theoretical physics that aims to account for the thermal behaviour of macroscopic bodies in terms of a classical mechanical model of their microscopic constituents, with the help of probabilistic assumptions. In the last century and a half, a fair number of approaches have been developed to meet this aim. This study of their foundations assesses their coherence and analyzes the motivations for their basic assumptions, and the interpretations of their central concepts. (...)
    Download  
     
    Export citation  
     
    Bookmark   99 citations  
  • Boltzmann, Gibbs, and the concept of equilibrium.David A. Lavis - 2008 - Philosophy of Science 75 (5):682-696.
    The Boltzmann and Gibbs approaches to statistical mechanics have very different definitions of equilibrium and entropy. The problems associated with this are discussed and it is suggested that they can be resolved, to produce a version of statistical mechanics incorporating both approaches, by redefining equilibrium not as a binary property but as a continuous property measured by the Boltzmann entropy and by introducing the idea of thermodynamic-like behaviour for the Boltzmann entropy. The Kac ring model is used as an example (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Typicality of Dynamics and the Laws of Nature.Aldo Filomeno - 2023 - In Cristián Soto (ed.), Current Debates in Philosophy of Science: In Honor of Roberto Torretti. Springer Verlag.
    Certain results, most famously in classical statistical mechanics and complex systems, but also in quantum mechanics and high-energy physics, yield a coarse-grained stable statistical pattern in the long run. The explanation of these results shares a common structure: the results hold for a 'typical' dynamics, that is, for most of the underlying dynamics. In this paper I argue that the structure of the explanation of these results might shed some light --a different light-- on philosophical debates on the laws of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Reviving Frequentism.Mario Hubert - 2021 - Synthese 199:5255–5584.
    Philosophers now seem to agree that frequentism is an untenable strategy to explain the meaning of probabilities. Nevertheless, I want to revive frequentism, and I will do so by grounding probabilities on typicality in the same way as the thermodynamic arrow of time can be grounded on typicality within statistical mechanics. This account, which I will call typicality frequentism, will evade the major criticisms raised against previous forms of frequentism. In this theory, probabilities arise within a physical theory from statistical (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • In Praise of Clausius Entropy: Reassessing the Foundations of Boltzmannian Statistical Mechanics.Christopher Gregory Weaver - 2021 - Foundations of Physics 51 (3):1-64.
    I will argue, pace a great many of my contemporaries, that there's something right about Boltzmann's attempt to ground the second law of thermodynamics in a suitably amended deterministic time-reversal invariant classical dynamics, and that in order to appreciate what's right about (what was at least at one time) Boltzmann's explanatory project, one has to fully apprehend the nature of microphysical causal structure, time-reversal invariance, and the relationship between Boltzmann entropy and the work of Rudolf Clausius.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Typical Humean worlds have no laws.Dustin Lazarovici - unknown
    The paper uses the concept of typicality to spell out an argument against Humean supervenience and the best system account of laws. It proves that, in a very general and robust sense, almost all possible Humean worlds have no Humean laws. They are worlds of irreducible complexity that do not allow for any systematization. After explaining typicality reasoning in general, the implications of this result for the metaphysics of laws are discussed in detail.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Typical: A Theory of Typicality and Typicality Explanation.Isaac Wilhelm - 2022 - British Journal for the Philosophy of Science 73 (2):561-581.
    Typicality is routinely invoked in everyday contexts: bobcats are typically short-tailed; people are typically less than seven feet tall. Typicality is invoked in scientific contexts as well: typical gases expand; typical quantum systems exhibit probabilistic behaviour. And typicality facts like these support many explanations, both quotidian and scientific. But what is it for something to be typical? And how do typicality facts explain? In this paper, I propose a general theory of typicality. I analyse the notion of a typical property. (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Naturalness and Emergence.David Wallace - 2019 - The Monist 102 (4):499-524.
    I develop an account of naturalness in physics which demonstrates that naturalness assumptions are not restricted to narrow cases in high-energy physics but are a ubiquitous part of how interlevel relations are derived in physics. After exploring how and to what extent we might justify such assumptions on methodological grounds or through appeal to speculative future physics, I consider the apparent failure of naturalness in cosmology and in the Standard Model. I argue that any such naturalness failure threatens to undermine (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Spontaneous Symmetry Breaking in Finite Quantum Systems: a decoherent-histories approach.David Wallace - unknown
    Spontaneous symmetry breaking in quantum systems, such as ferromagnets, is normally described as degeneracy of the ground state; however, it is well established that this degeneracy only occurs in spatially infinite systems, and even better established that ferromagnets are not spatially infinite. I review this well-known paradox, and consider a popular solution where the symmetry is explicitly broken by some external field which goes to zero in the infinite-volume limit; although this is formally satisfactory, I argue that it must be (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The quantitative content of statistical mechanics.David Wallace - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):285-293.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • An empirical approach to symmetry and probability.Jill North - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41 (1):27-40.
    We often use symmetries to infer outcomes’ probabilities, as when we infer that each side of a fair coin is equally likely to come up on a given toss. Why are these inferences successful? I argue against answering this with an a priori indifference principle. Reasons to reject that principle are familiar, yet instructive. They point to a new, empirical explanation for the success of our probabilistic predictions. This has implications for indifference reasoning in general. I argue that a priori (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations