Switch to: Citations

Add references

You must login to add references.
  1. (2 other versions)Entailment: The Logic of Relevance and Necessity.[author unknown] - 1975 - Studia Logica 54 (2):261-266.
    Download  
     
    Export citation  
     
    Bookmark   173 citations  
  • Equational bases for joins of residuated-lattice varieties.Nikolaos Galatos - 2004 - Studia Logica 76 (2):227 - 240.
    Given a positive universal formula in the language of residuated lattices, we construct a recursive basis of equations for a variety, such that a subdirectly irreducible residuated lattice is in the variety exactly when it satisfies the positive universal formula. We use this correspondence to prove, among other things, that the join of two finitely based varieties of commutative residuated lattices is also finitely based. This implies that the intersection of two finitely axiomatized substructural logics over FL + is also (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Substructural Fuzzy Logics.George Metcalfe & Franco Montagna - 2007 - Journal of Symbolic Logic 72 (3):834 - 864.
    Substructural fuzzy logics are substructural logics that are complete with respect to algebras whose lattice reduct is the real unit interval [0.1]. In this paper, we introduce Uninorm logic UL as Multiplicative additive intuitionistic linear logic MAILL extended with the prelinearity axiom ((A → B) ∧ t) ∨ ((B → A) ∧ t). Axiomatic extensions of UL include known fuzzy logics such as Monoidal t-norm logic MTL and Gödel logic G, and new weakening-free logics. Algebraic semantics for these logics are (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Formal systems of fuzzy logic and their fragments.Petr Cintula, Petr Hájek & Rostislav Horčík - 2007 - Annals of Pure and Applied Logic 150 (1-3):40-65.
    Formal systems of fuzzy logic are well-established logical systems and respected members of the broad family of the so-called substructural logics closely related to the famous logic BCK. The study of fragments of logical systems is an important issue of research in any class of non-classical logics. Here we study the fragments of nine prominent fuzzy logics to all sublanguages containing implication. However, the results achieved in the paper for those nine logics are usually corollaries of theorems with much wider (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Proof by Cases Property and its Variants in Structural Consequence Relations.Petr Cintula & Carles Noguera - 2013 - Studia Logica 101 (4):713-747.
    This paper is a contribution to the study of the rôle of disjunction inAlgebraic Logic. Several kinds of (generalized) disjunctions, usually defined using a suitable variant of the proof by cases property, were introduced and extensively studied in the literature mainly in the context of finitary logics. The goals of this paper are to extend these results to all logics, to systematize the multitude of notions of disjunction (both those already considered in the literature and those introduced in this paper), (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Implicational (semilinear) logics I: a new hierarchy. [REVIEW]Petr Cintula & Carles Noguera - 2010 - Archive for Mathematical Logic 49 (4):417-446.
    In abstract algebraic logic, the general study of propositional non-classical logics has been traditionally based on the abstraction of the Lindenbaum-Tarski process. In this process one considers the Leibniz relation of indiscernible formulae. Such approach has resulted in a classification of logics partly based on generalizations of equivalence connectives: the Leibniz hierarchy. This paper performs an analogous abstract study of non-classical logics based on the kind of generalized implication connectives they possess. It yields a new classification of logics expanding Leibniz (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • A proof of standard completeness for Esteva and Godo's logic MTL.Sándor Jenei & Franco Montagna - 2002 - Studia Logica 70 (2):183-192.
    In the present paper we show that any at most countable linearly-ordered commutative residuated lattice can be embedded into a commutative residuated lattice on the real unit interval [0, 1]. We use this result to show that Esteva and Godo''s logic MTL is complete with respect to interpretations into commutative residuated lattices on [0, 1]. This solves an open problem raised in.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Cut elimination and strong separation for substructural logics: an algebraic approach.Nikolaos Galatos & Hiroakira Ono - 2010 - Annals of Pure and Applied Logic 161 (9):1097-1133.
    We develop a general algebraic and proof-theoretic study of substructural logics that may lack associativity, along with other structural rules. Our study extends existing work on substructural logics over the full Lambek Calculus [34], Galatos and Ono [18], Galatos et al. [17]). We present a Gentzen-style sequent system that lacks the structural rules of contraction, weakening, exchange and associativity, and can be considered a non-associative formulation of . Moreover, we introduce an equivalent Hilbert-style system and show that the logic associated (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations