Switch to: References

Add citations

You must login to add citations.
  1. Stable generic structures.John T. Baldwin & Niandong Shi - 1996 - Annals of Pure and Applied Logic 79 (1):1-35.
    Hrushovski originated the study of “flat” stable structures in constructing a new strongly minimal set and a stable 0-categorical pseudoplane. We exhibit a set of axioms which for collections of finite structure with dimension function δ give rise to stable generic models. In addition to the Hrushovski examples, this formalization includes Baldwin's almost strongly minimal non-Desarguesian projective plane and several others. We develop the new case where finite sets may have infinite closures with respect to the dimension function δ. In (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • What's so special about (Z/4Z)ω?Gisela Ahlbrandt & Martin Ziegler - 1991 - Archive for Mathematical Logic 31 (2):115-132.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The First-Order Structure of Weakly Dedekind-Finite Sets.A. C. Walczak-Typke - 2005 - Journal of Symbolic Logic 70 (4):1161 - 1170.
    We show that infinite sets whose power-sets are Dedekind-finite can only carry N₀-categorical first order structures. We identify other subclasses of this class of Dedekind-finite sets, and discuss their possible first order structures.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • European Summer Meeting of the Association for Symbolic Logic, Paris, 1985.K. R. Apt - 1987 - Journal of Symbolic Logic 52 (1):295-349.
    Download  
     
    Export citation  
     
    Bookmark  
  • Attention à la marche!Bruno Poizat - 1986 - Journal of Symbolic Logic 51 (3):570-585.
    Download  
     
    Export citation  
     
    Bookmark  
  • The geometry of weakly minimal types.Steven Buechler - 1985 - Journal of Symbolic Logic 50 (4):1044-1053.
    Let T be superstable. We say a type p is weakly minimal if R(p, L, ∞) = 1. Let $M \models T$ be uncountable and saturated, H = p(M). We say $D \subset H$ is locally modular if for all $X, Y \subset D$ with $X = \operatorname{acl}(X) \cap D, Y = \operatorname{acl}(Y) \cap D$ and $X \cap Y \neq \varnothing$ , dim(X ∪ Y) + dim(X ∩ Y) = dim(X) + dim(Y). Theorem 1. Let p ∈ S(A) be weakly (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • A new strongly minimal set.Ehud Hrushovski - 1993 - Annals of Pure and Applied Logic 62 (2):147-166.
    We construct a new class of 1 categorical structures, disproving Zilber's conjecture, and study some of their properties.
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • The structure of amorphous sets.J. K. Truss - 1995 - Annals of Pure and Applied Logic 73 (2):191-233.
    A set is said to be amorphous if it is infinite, but is not the disjoint union of two infinite subsets. Thus amorphous sets can exist only if the axiom of choice is false. We give a general study of the structure which an amorphous set can carry, with the object of eventually obtaining a complete classification. The principal types of amorphous set we distinguish are the following: amorphous sets not of projective type, either bounded or unbounded size of members (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Some model-theoretic results in the algebraic theory of quadratic forms.Vincent Astier - 2001 - Annals of Pure and Applied Logic 112 (2-3):189-223.
    This paper studies some model-theoretic properties of special groups of finite type. Special groups are a first-order axiomatization of the algebraic theory of quadratic forms, introduced by Dickmann and Miraglia, which is essentially equivalent to abstract Witt rings. More precisely, we consider elementary equivalence, saturation, elementary embeddings, quantifier elimination, stability and Morley rank.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Interpreting groups in ω-categorical structures.Dugald Macpherson - 1991 - Journal of Symbolic Logic 56 (4):1317-1324.
    It is shown that no infinite group is interpretable in any structure which is homogeneous in a finite relational language. Related questions are discussed for other ω-categorical structures.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • From stability to simplicity.Byunghan Kim & Anand Pillay - 1998 - Bulletin of Symbolic Logic 4 (1):17-36.
    §1. Introduction. In this report we wish to describe recent work on a class of first order theories first introduced by Shelah in [32], the simple theories. Major progress was made in the first author's doctoral thesis [17]. We will give a survey of this, as well as further works by the authors and others.The class of simple theories includes stable theories, but also many more, such as the theory of the random graph. Moreover, many of the theories of particular (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Reducts of structures and maximal-closed permutation groups.Manuel Bodirsky & Dugald Macpherson - 2016 - Journal of Symbolic Logic 81 (3):1087-1114.
    Download  
     
    Export citation  
     
    Bookmark  
  • On First-Order Sentences without Finite Models.Marko Djordjević - 2004 - Journal of Symbolic Logic 69 (2):329 - 339.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Strongly determined types.Alexandre A. Ivanov & Dugald Macpherson - 1999 - Annals of Pure and Applied Logic 99 (1-3):197-230.
    The notion of a strongly determined type over A extending p is introduced, where p .S. A strongly determined extension of p over A assigns, for any model M )- A, a type q S extending p such that, if realises q, then any elementary partial map M → M which fixes acleq pointwise is elementary over . This gives a crude notion of independence which arises very frequently. Examples are provided of many different kinds of theories with strongly determined (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Structures coordinatized by indiscernible sets.A. H. Lachlan - 1987 - Annals of Pure and Applied Logic 34 (3):245-273.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Omega-categoricity, relative categoricity and coordinatisation.Wilfrid Hodges, I. M. Hodkinson & Dugald Macpherson - 1990 - Annals of Pure and Applied Logic 46 (2):169-199.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Finitely generated submodels of an uncountably categorical homogeneous structure.Tapani Hyttinen - 2004 - Mathematical Logic Quarterly 50 (1):77.
    We generalize the result of non-finite axiomatizability of totally categorical first-order theories from elementary model theory to homogeneous model theory. In particular, we lift the theory of envelopes to homogeneous model theory and develope theory of imaginaries in the case of ω-stable homogeneous classes of finite U-rank.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Finitely axiomatizable strongly minimal groups.Thomas Blossier & Elisabeth Bouscaren - 2010 - Journal of Symbolic Logic 75 (1):25-50.
    We show that if G is a strongly minimal finitely axiomatizable group, the division ring of quasi-endomorphisms of G must be an infinite finitely presented ring.
    Download  
     
    Export citation  
     
    Bookmark  
  • Finite Satisfiability and N₀-Categorical Structures with Trivial Dependence.Marko Djordjević - 2006 - Journal of Symbolic Logic 71 (3):810 - 830.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the automorphism groups of finite covers.David M. Evans & Ehud Hrushovski - 1993 - Annals of Pure and Applied Logic 62 (2):83-112.
    We are concerned with identifying by how much a finite cover of an 0-categorical structure differs from a sequence of free covers. The main results show that this is measured by automorphism groups which are nilpotent-by-abelian. In the language of covers, these results say that every finite cover can be decomposed naturally into linked, superlinked and free covers. The superlinked covers arise from covers over a different base, and to describe this properly we introduce the notion of a quasi-cover.These results (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Non-isolated types in stable theories.Predrag Tanović - 2007 - Annals of Pure and Applied Logic 145 (1):1-15.
    We introduce notions of strong and eventual strong non-isolation for types in countable, stable theories. For T superstable or small stable we prove a dichotomy theorem: a regular type over a finite domain is either eventually strongly non-isolated or is non-orthogonal to a NENI type . As an application we obtain the upper bound for Lascar’s rank of a superstable theory which is one-based or trivial, and has fewer than 20 non-isomorphic countable models.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Vaught’s conjecture for superstable theories of finite rank.Steven Buechler - 2008 - Annals of Pure and Applied Logic 155 (3):135-172.
    In [R. Vaught, Denumerable models of complete theories, in: Infinitistic Methods, Pregamon, London, 1961, pp. 303–321] Vaught conjectured that a countable first order theory has countably many or 20 many countable models. Here, the following special case is proved.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Independence and the finite submodel property.Vera Koponen - 2009 - Annals of Pure and Applied Logic 158 (1-2):58-79.
    We study a class of 0-categorical simple structures such that every M in has uncomplicated forking behavior and such that definable relations in M which do not cause forking are independent in a sense that is made precise; we call structures in independent. The SU-rank of such M may be n for any natural number n>0. The most well-known unstable member of is the random graph, which has SU-rank one. The main result is that for every strongly independent structure M (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fusion over Sublanguages.Assaf Hasson & Martin Hils - 2006 - Journal of Symbolic Logic 71 (2):361 - 398.
    Generalising Hrushovski's fusion technique we construct the free fusion of two strongly minimal theories T₁, T₂ intersecting in a totally categorical sub-theory T₀. We show that if, e.g., T₀ is the theory of infinite vector spaces over a finite field then the fusion theory Tω exists, is complete and ω-stable of rank ω. We give a detailed geometrical analysis of Tω, proving that if both T₁, T₂ are 1-based then, Tω can be collapsed into a strongly minimal theory, if some (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Note on Generic Projective Planes.Koichiro Ikeda - 2002 - Notre Dame Journal of Formal Logic 43 (4):249-254.
    Hrushovski constructed an -categorical stable pseudoplane which refuted Lachlan's conjecture. In this note, we show that an -categorical projective plane cannot be constructed by "the Hrushovski method.".
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Weight ω in stable theories with few types.Bernhard Herwig - 1995 - Journal of Symbolic Logic 60 (2):353-373.
    We construct a type p with preweight ω with respect to itself in a theory with few types. A type with this property must be present in a stable theory with finitely many (but more than one) countable models. The construction is a modification of Hrushovski's important pseudoplane construction.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Quasi finitely axiomatizable totally categorical theories.Gisela Ahlbrandt & Martin Ziegler - 1986 - Annals of Pure and Applied Logic 30 (1):63-82.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Superstable groups of finite rank without pseudoplanes.Anand Pillay - 1986 - Annals of Pure and Applied Logic 30 (1):95-101.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Interpolative fusions.Alex Kruckman, Chieu-Minh Tran & Erik Walsberg - 2020 - Journal of Mathematical Logic 21 (2):2150010.
    We define the interpolative fusion T∪∗ of a family i∈I of first-order theories over a common reduct T∩, a notion that generalizes many examples of random or generic structures in the model-theo...
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Independence in generic incidence structures.Gabriel Conant & Alex Kruckman - 2019 - Journal of Symbolic Logic 84 (2):750-780.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Forking, normalization and canonical bases.Anand Pillay - 1986 - Annals of Pure and Applied Logic 32:61-81.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Supersimple ω-categorical groups and theories.David M. Evans & Frank O. Wagner - 2000 - Journal of Symbolic Logic 65 (2):767-776.
    An ω-categorical supersimple group is finite-by-abelian-by-finite, and has finite SU-rank. Every definable subgroup is commensurable with an acl( $\emptyset$ )-definable subgroup. Every finitely based regular type in a CM-trivial ω-categorical simple theory is non-orthogonal to a type of SU-rank 1. In particular, a supersimple ω-categorical CM-trivial theory has finite SU-rank.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Ordre fondamental d'une théorie 1-basée.Seyyed Bagheri - 1999 - Journal of Symbolic Logic 64 (4):1426-1438.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The forth part of the back and forth map in countable homogeneous structures.S. J. Mcleish - 1997 - Journal of Symbolic Logic 62 (3):873-890.
    The model theoretic `back and forth' construction of isomorphisms and automorphisms is based on the proof by Cantor that the theory of dense linear orderings without endpoints is ℵ 0 -categorical. However, Cantor's method is slightly different and for many other structures it yields an injection which is not surjective. The purpose here is to examine Cantor's method (here called `going forth') and to determine when it works and when it fails. Partial answers to this question are found, extending those (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Multidimensional Exact Classes, Smooth Approximation and Bounded 4-Types.Daniel Wolf - 2020 - Journal of Symbolic Logic 85 (4):1305-1341.
    In connection with the work of Anscombe, Macpherson, Steinhorn and the present author in [1] we investigate the notion of a multidimensional exact class (R-mec), a special kind of multidimensional asymptotic class (R-mac) with measuring functions that yield the exact sizes of definable sets, not just approximations. We use results about smooth approximation [24] and Lie coordinatization [13] to prove the following result (Theorem 4.6.4), as conjectured by Macpherson: For any countable language$\mathcal {L}$and any positive integerdthe class$\mathcal {C}(\mathcal {L},d)$of all (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Completeness and categoricity (in power): Formalization without foundationalism.John T. Baldwin - 2014 - Bulletin of Symbolic Logic 20 (1):39-79.
    We propose a criterion to regard a property of a theory (in first or second order logic) as virtuous: the property must have significant mathematical consequences for the theory (or its models). We then rehearse results of Ajtai, Marek, Magidor, H. Friedman and Solovay to argue that for second order logic, ‘categoricity’ has little virtue. For first order logic, categoricity is trivial; but ‘categoricity in power’ has enormous structural consequences for any of the theories satisfying it. The stability hierarchy extends (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Trivial pursuit: Remarks on the main gap.John T. Baldwin & Leo Harrington - 1987 - Annals of Pure and Applied Logic 34 (3):209-230.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Reducts of random hypergraphs.Simon Thomas - 1996 - Annals of Pure and Applied Logic 80 (2):165-193.
    For each k 1, let Γk be the countable universal homogeneous k-hypergraph. In this paper, we shall classify the closed permutation groups G such that Aut G Sym. In particular, we shall show that there exist only finitely many such groups G for each k 1. We shall also show that each of the associated reducts of Γk is homogeneous with respect to a finite relational language.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Model theory: Geometrical and set-theoretic aspects and prospects.Angus Macintyre - 2003 - Bulletin of Symbolic Logic 9 (2):197-212.
    I see model theory as becoming increasingly detached from set theory, and the Tarskian notion of set-theoretic model being no longer central to model theory. In much of modern mathematics, the set-theoretic component is of minor interest, and basic notions are geometric or category-theoretic. In algebraic geometry, schemes or algebraic spaces are the basic notions, with the older “sets of points in affine or projective space” no more than restrictive special cases. The basic notions may be given sheaf-theoretically, or functorially. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Upward Morley's theorem downward.Gábor Sági & Zalán Gyenis - 2013 - Mathematical Logic Quarterly 59 (4-5):303-331.
    By a celebrated theorem of Morley, a theory T is ℵ1‐categorical if and only if it is κ‐categorical for all uncountable κ. In this paper we are taking the first steps towards extending Morley's categoricity theorem “to the finite”. In more detail, we are presenting conditions, implying that certain finite subsets of certain ℵ1‐categorical T have at most one n‐element model for each natural number (counting up to isomorphism, of course).
    Download  
     
    Export citation  
     
    Bookmark  
  • Some aspects of model theory and finite structures.Eric Rosen - 2002 - Bulletin of Symbolic Logic 8 (3):380-403.
    Model theory is concerned mainly, although not exclusively, with infinite structures. In recent years, finite structures have risen to greater prominence, both within the context of mainstream model theory, e.g., in work of Lachlan, Cherlin, Hrushovski, and others, and with the advent of finite model theory, which incorporates elements of classical model theory, combinatorics, and complexity theory. The purpose of this survey is to provide an overview of what might be called the model theory of finite structures. Some topics in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • In memoriam: Michael Morley, 1930–2020.John Baldwin & David Marker - 2021 - Bulletin of Symbolic Logic 27 (4):514-518.
    Download  
     
    Export citation  
     
    Bookmark  
  • Vapnik–Chervonenkis Density in Some Theories without the Independence Property, II.Matthias Aschenbrenner, Alf Dolich, Deirdre Haskell, Dugald Macpherson & Sergei Starchenko - 2013 - Notre Dame Journal of Formal Logic 54 (3-4):311-363.
    We study the Vapnik–Chervonenkis density of definable families in certain stable first-order theories. In particular, we obtain uniform bounds on the VC density of definable families in finite $\mathrm {U}$-rank theories without the finite cover property, and we characterize those abelian groups for which there exist uniform bounds on the VC density of definable families.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Stable theories, pseudoplanes and the number of countable models.Anand Pillay - 1989 - Annals of Pure and Applied Logic 43 (2):147-160.
    We prove that if T is a stable theory with only a finite number of countable models, then T contains a type-definable pseudoplane. We also show that for any stable theory T either T contains a type-definable pseudoplane or T is weakly normal.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Locally finite weakly minimal theories.James Loveys - 1991 - Annals of Pure and Applied Logic 55 (2):153-203.
    Suppose T is a weakly minimal theory and p a strong 1-type having locally finite but nontrivial geometry. That is, for any M [boxvR] T and finite Fp, there is a finite Gp such that acl∩p = gεGacl∩pM; however, we cannot always choose G = F. Then there are formulas θ and E so that θεp and for any M[boxvR]T, E defines an equivalence relation with finite classes on θ/E definably inherits the structure of either a projective or affine space (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Categoricity and generalized model completeness.G. Ahlbrandt & John T. Baldwin - 1988 - Archive for Mathematical Logic 27 (1):1-4.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Modular types in some supersimple theories.Ludomir Newelski - 2002 - Journal of Symbolic Logic 67 (4):1601-1615.
    We consider a small supersimple theory with a property (CS) (close to stability). We prove that if in such a theoryTthere is a typep∈S(A) (whereAis finite) withSU(p) = 1 and infinitely many extensions overacleq(A), then inTthere is a modular such type. Also, ifTis supersimple with (CS) andp∈S(∅) is isolated,SU(p) = 1 andphas infinitely many extensions overacleq(∅), thenpis modular.
    Download  
     
    Export citation  
     
    Bookmark  
  • The finite submodel property and ω-categorical expansions of pregeometries.Marko Djordjević - 2006 - Annals of Pure and Applied Logic 139 (1):201-229.
    We prove, by a probabilistic argument, that a class of ω-categorical structures, on which algebraic closure defines a pregeometry, has the finite submodel property. This class includes any expansion of a pure set or of a vector space, projective space or affine space over a finite field such that the new relations are sufficiently independent of each other and over the original structure. In particular, the random graph belongs to this class, since it is a sufficiently independent expansion of an (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Finite variable logic, stability and finite models.Marko Djordjevic - 2001 - Journal of Symbolic Logic 66 (2):837-858.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Homogeneous 1‐based structures and interpretability in random structures.Vera Koponen - 2017 - Mathematical Logic Quarterly 63 (1-2):6-18.
    Let V be a finite relational vocabulary in which no symbol has arity greater than 2. Let be countable V‐structure which is homogeneous, simple and 1‐based. The first main result says that if is, in addition, primitive, then it is strongly interpretable in a random structure. The second main result, which generalizes the first, implies (without the assumption on primitivity) that if is “coordinatized” by a set with SU‐rank 1 and there is no definable (without parameters) nontrivial equivalence relation on (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations