Switch to: Citations

Add references

You must login to add references.
  1. Cardinality, Counting, and Equinumerosity.Richard G. Heck - 2000 - Notre Dame Journal of Formal Logic 41 (3):187-209.
    Frege, famously, held that there is a close connection between our concept of cardinal number and the notion of one-one correspondence, a connection enshrined in Hume's Principle. Husserl, and later Parsons, objected that there is no such close connection, that our most primitive conception of cardinality arises from our grasp of the practice of counting. Some empirical work on children's development of a concept of number has sometimes been thought to point in the same direction. I argue, however, that Frege (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • (3 other versions)Stanford Encyclopedia of Philosophy.Edward N. Zalta (ed.) - 1995 - Stanford University.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • The foundations of arithmetic.Gottlob Frege - 1884/1950 - Evanston, Ill.,: Northwestern University Press.
    In arithmetic, if only because many of its methods and concepts originated in India, it has been the tradition to reason less strictly than in geometry, ...
    Download  
     
    Export citation  
     
    Bookmark   419 citations  
  • Frege's conception of numbers as objects.Crispin Wright - 1983 - [Aberdeen]: Aberdeen University Press.
    Download  
     
    Export citation  
     
    Bookmark   242 citations  
  • The development of arithmetic in Frege's Grundgesetze der Arithmetik.Richard Heck - 1993 - Journal of Symbolic Logic 58 (2):579-601.
    Frege's development of the theory of arithmetic in his Grundgesetze der Arithmetik has long been ignored, since the formal theory of the Grundgesetze is inconsistent. His derivations of the axioms of arithmetic from what is known as Hume's Principle do not, however, depend upon that axiom of the system--Axiom V--which is responsible for the inconsistency. On the contrary, Frege's proofs constitute a derivation of axioms for arithmetic from Hume's Principle, in (axiomatic) second-order logic. Moreover, though Frege does prove each of (...)
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Le structuralisme.J. Piaget - 1968 - Cahiers Internationaux de Symbolisme.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • The philosophical basis of our knowledge of number.William Demopoulos - 1998 - Noûs 32 (4):481-503.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Preschoolers' counting: Principles before skill.Rochel Gelman & Elizabeth Meck - 1983 - Cognition 13 (3):343-359.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)The basic laws of arithmetic.Gottlob Frege - 1893 - Berkeley,: University of California Press. Edited by Montgomery Furth.
    ... as 'logicism') that the content expressed by true propositions of arithmetic and analysis is not something of an irreducibly mathematical character, ...
    Download  
     
    Export citation  
     
    Bookmark   130 citations