Switch to: Citations

Add references

You must login to add references.
  1. Recursive predicates and quantifiers.S. C. Kleene - 1943 - Transactions of the American Mathematical Society 53:41-73.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Propositional Calculus and Realizability.Gene F. Rose - 1954 - Journal of Symbolic Logic 19 (2):126-126.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Rules and Arithmetics.Albert Visser - 1999 - Notre Dame Journal of Formal Logic 40 (1):116-140.
    This paper is concerned with the logical structure of arithmetical theories. We survey results concerning logics and admissible rules of constructive arithmetical theories. We prove a new theorem: the admissible propositional rules of Heyting Arithmetic are the same as the admissible propositional rules of Intuitionistic Propositional Logic. We provide some further insights concerning predicate logical admissible rules for arithmetical theories.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • (1 other version)Substitutions of< i> Σ_< sub> 1< sup> 0-sentences: explorations between intuitionistic propositional logic and intuitionistic arithmetic. [REVIEW]Albert Visser - 2002 - Annals of Pure and Applied Logic 114 (1):227-271.
    This paper is concerned with notions of consequence. On the one hand, we study admissible consequence, specifically for substitutions of Σ 1 0 -sentences over Heyting arithmetic . On the other hand, we study preservativity relations. The notion of preservativity of sentences over a given theory is a dual of the notion of conservativity of formulas over a given theory. We show that admissible consequence for Σ 1 0 -substitutions over HA coincides with NNIL -preservativity over intuitionistic propositional logic . (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)Substitutions of Σ10-sentences: explorations between intuitionistic propositional logic and intuitionistic arithmetic.Albert Visser - 2002 - Annals of Pure and Applied Logic 114 (1-3):227-271.
    This paper is concerned with notions of consequence. On the one hand, we study admissible consequence, specifically for substitutions of Σ 1 0 -sentences over Heyting arithmetic . On the other hand, we study preservativity relations. The notion of preservativity of sentences over a given theory is a dual of the notion of conservativity of formulas over a given theory. We show that admissible consequence for Σ 1 0 -substitutions over HA coincides with NNIL -preservativity over intuitionistic propositional logic . (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On the completenes principle: A study of provability in heyting's arithmetic and extensions.Albert Visser - 1982 - Annals of Mathematical Logic 22 (3):263-295.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • A semantical proof of De Jongh's theorem.Jaap van Oosten - 1991 - Archive for Mathematical Logic 31 (2):105-114.
    In 1969, De Jongh proved the “maximality” of a fragment of intuitionistic predicate calculus forHA. Leivant strengthened the theorem in 1975, using proof-theoretical tools (normalisation of infinitary sequent calculi). By a refinement of De Jongh's original method (using Beth models instead of Kripke models and sheafs of partial combinatory algebras), a semantical proof is given of a result that is almost as good as Leivant's. Furthermore, it is shown thatHA can be extended to Higher Order Heyting Arithmetic+all trueΠ 2 0 (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Undecidable theories.Alfred Tarski - 1968 - Amsterdam,: North-Holland Pub. Co.. Edited by Andrzej Mostowski & Raphael M. Robinson.
    This book is well known for its proof that many mathematical systems - including lattice theory and closure algebras - are undecidable. It consists of three treatises from one of the greatest logicians of all time: "A General Method in Proofs of Undecidability," "Undecidability and Essential Undecidability in Mathematics," and "Undecidability of the Elementary Theory of Groups.".
    Download  
     
    Export citation  
     
    Bookmark   84 citations  
  • A survey of propositional realizability logic.Valery Plisko - 2009 - Bulletin of Symbolic Logic 15 (1):1-42.
    The study of propositional realizability logic was initiated in the 50th of the last century. Some interesting results were obtained in the 60-70th. but many important problems in this area are still open. Now interest to these problems from new generation of researchers is observed. This survey contains an exposition of the results on propositional realizability logic and corresponding techniques. Thus reading this paper can be the start point in exploring and development of constructive logic.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Eine Unableitbarkeitsbeweismethode für den intuitionistischen Aussagenkalkul.G. Kreisel - 1957 - Archive for Mathematical Logic 3 (3-4):74.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • (1 other version)Disjunction and existence under implication in elementary intuitionistic formalisms.S. C. Kleene - 1962 - Journal of Symbolic Logic 27 (1):11-18.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • (1 other version)A sequence of decidable finitely axiomatizable intermediate logics with the disjunction property.D. M. Gabbay & D. H. J. De Jongh - 1974 - Journal of Symbolic Logic 39 (1):67-78.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (1 other version)A Sequence of Decidable Finitely Axiomatizable Intermediate Logics with the Disjunction Property.D. M. Gabbay & D. H. J. De Jongh - 1974 - Journal of Symbolic Logic 39 (1):67 - 78.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Kripke models and the intuitionistic theory of species.D. H. J. de Jongh - 1976 - Annals of Mathematical Logic 9 (1):157.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Incompleteness in intuitionistic metamathematics.David Charles McCarty - 1991 - Notre Dame Journal of Formal Logic 32 (3):323-358.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Intuitionistic validity in T-normal Kripke structures.Samuel R. Buss - 1993 - Annals of Pure and Applied Logic 59 (3):159-173.
    Let T be a first-order theory. A T-normal Kripke structure is one in which every world is a classical model of T. This paper gives a characterization of the intuitionistic theory T of sentences intuitionistically valid in all T-normal Kripke structures and proves the corresponding soundness and completeness theorems. For Peano arithmetic , the theory PA is a proper subtheory of Heyting arithmetic , so HA is complete but not sound for PA-normal Kripke structures.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • (1 other version)Metamathematics of First-Order Arithmetic.Petr Hajék & Pavel Pudlák - 1994 - Studia Logica 53 (3):465-466.
    Download  
     
    Export citation  
     
    Bookmark   145 citations  
  • Some applications of Kleene's methods for intuitionistic systems.Harvey Friedman - 1973 - In A. R. D. Mathias & Hartley Rogers (eds.), Cambridge Summer School in Mathematical Logic. New York,: Springer Verlag. pp. 113--170.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Modal logic.Alexander Chagrov - 1997 - New York: Oxford University Press. Edited by Michael Zakharyaschev.
    For a novice this book is a mathematically-oriented introduction to modal logic, the discipline within mathematical logic studying mathematical models of reasoning which involve various kinds of modal operators. It starts with very fundamental concepts and gradually proceeds to the front line of current research, introducing in full details the modern semantic and algebraic apparatus and covering practically all classical results in the field. It contains both numerous exercises and open problems, and presupposes only minimal knowledge in mathematics. A specialist (...)
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • (1 other version)Metamathematics of First-Order Arithmetic.P. Hájek & P. Pudlák - 2000 - Studia Logica 64 (3):429-430.
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • Higher set theory.Harvey Friedman - manuscript
    Russell’s way out of his paradox via the impre-dicative theory of types has roughly the same logical power as Zermelo set theory - which supplanted it as a far more flexible and workable axiomatic foundation for mathematics. We discuss some new formalisms that are conceptually close to Russell, yet simpler, and have the same logical power as higher set theory - as represented by the far more powerful Zermelo-Frankel set theory and beyond. END.
    Download  
     
    Export citation  
     
    Bookmark   3 citations