Switch to: Citations

Add references

You must login to add references.
  1. Boolean considerations on John Buridan's octagons of opposition.Lorenz Demey - 2018 - History and Philosophy of Logic 40 (2):116-134.
    This paper studies John Buridan's octagons of opposition for the de re modal propositions and the propositions of unusual construction. Both Buridan himself and the secondary literature have emphasized the strong similarities between these two octagons (as well as a third one, for propositions with oblique terms). In this paper, I argue that the interconnection between both octagons is more subtle than has previously been thought: if we move beyond the Aristotelian relations, and also take Boolean considerations into account, then (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Interaction between Logic and Geometry in Aristotelian Diagrams.Lorenz6 Demey & Hans5 Smessaert - 2016 - Diagrammatic Representation and Inference, Diagrams 9781:67 - 82.
    © Springer International Publishing Switzerland 2016. We develop a systematic approach for dealing with informationally equivalent Aristotelian diagrams, based on the interaction between the logical properties of the visualized information and the geometrical properties of the concrete polygon/polyhedron. To illustrate the account’s fruitfulness, we apply it to all Aristotelian families of 4-formula fragments that are closed under negation and to all Aristotelian families of 6-formula fragments that are closed under negation.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Combinatorial Bitstring Semantics for Arbitrary Logical Fragments.Lorenz6 Demey & Hans5 Smessaert - 2018 - Journal of Philosophical Logic 47 (2):325-363.
    Logical geometry systematically studies Aristotelian diagrams, such as the classical square of oppositions and its extensions. These investigations rely heavily on the use of bitstrings, which are compact combinatorial representations of formulas that allow us to quickly determine their Aristotelian relations. However, because of their general nature, bitstrings can be applied to a wide variety of topics in philosophical logic beyond those of logical geometry. Hence, the main aim of this paper is to present a systematic technique for assigning bitstrings (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Logic-Sensitivity and Bitstring Semantics in the Square of Opposition.Lorenz Demey & Stef Frijters - 2023 - Journal of Philosophical Logic 52 (6):1703-1721.
    This paper explores the interplay between logic-sensitivity and bitstring semantics in the square of opposition. Bitstring semantics is a combinatorial technique for representing the formulas that appear in a logical diagram, while logic-sensitivity entails that such a diagram may depend, not only on the formulas involved, but also on the logic with respect to which they are interpreted. These two topics have already been studied extensively in logical geometry, and are thus well-understood by themselves. However, the precise details of their (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logical Geometries and Information in the Square of Oppositions.Hans Smessaert & Lorenz Demey - 2014 - Journal of Logic, Language and Information 23 (4):527-565.
    The Aristotelian square of oppositions is a well-known diagram in logic and linguistics. In recent years, several extensions of the square have been discovered. However, these extensions have failed to become as widely known as the square. In this paper we argue that there is indeed a fundamental difference between the square and its extensions, viz., a difference in informativity. To do this, we distinguish between concrete Aristotelian diagrams and, on a more abstract level, the Aristotelian geometry. We then introduce (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • The Quantified Argument Calculus.Hanoch Ben-Yami - 2014 - Review of Symbolic Logic 7 (1):120-146.
    I develop a formal logic in which quantified arguments occur in argument positions of predicates. This logic also incorporates negative predication, anaphora and converse relation terms, namely, additional syntactic features of natural language. In these and additional respects, it represents the logic of natural language more adequately than does any version of Frege’s Predicate Calculus. I first introduce the system’s main ideas and familiarize it by means of translations of natural language sentences. I then develop a formal system built on (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)Category Theory.S. Awodey - 2007 - Bulletin of Symbolic Logic 13 (3):371-372.
    Download  
     
    Export citation  
     
    Bookmark   72 citations