Switch to: References

Citations of:

Category Theory

Bulletin of Symbolic Logic 13 (3):371-372 (2007)

Add citations

You must login to add citations.
  1. Categorical Abstractions of Molecular Structures of Biological Objects: A Case Study of Nucleic Acids.Jinyeong Gim - 2023 - Global Philosophy 33 (5):No.43.
    The type-level abstraction is a formal way to represent molecular structures in biological practice. Graphical representations of molecular structures of biological objects are also used to identify functional processes of things. This paper will reveal that category theory is a formal mathematical language not only to visualize molecular structures of biological objects as type-level abstraction formally but also to understand how to infer biological functions from the molecular structures of biological objects. Category theory is a toolkit to understand biological knowledge (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Intuitionistic logic versus paraconsistent logic. Categorical approach.Mariusz Kajetan Stopa - 2023 - Dissertation, Jagiellonian University
    The main research goal of the work is to study the notion of co-topos, its correctness, properties and relations with toposes. In particular, the dualization process proposed by proponents of co-toposes has been analyzed, which transforms certain Heyting algebras of toposes into co-Heyting ones, by which a kind of paraconsistent logic may appear in place of intuitionistic logic. It has been shown that if certain two definitions of topos are to be equivalent, then in one of them, in the context (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Husserl, Intentionality and Mathematics: Geometry and Category Theory.Romero Arturo - 2022 - In Boi Luciano & Lobo Carlos (eds.), When Form Becomes Substance. Power of Gestures, Diagrammatical Intuition and Phenomenology of Space. Birkhäuser. pp. 327-358.
    The following text is divided in four parts. The first presents the inner relation between the phenomenological concept of intentionality and space in a general mathematical sense. Following this train of though the second part brie_ly characterizes the use of the geometrical concept of manifold (Mannigfaltigkeit) in Husserl’s work. In the third part we present some examples of the use of the concept in Husserl’s analyses of space, time and intersubjectivity, pointing out some dif_iculties in his endeavor. In the fourth (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Grothendieck’s theory of schemes and the algebra–geometry duality.Gabriel Catren & Fernando Cukierman - 2022 - Synthese 200 (3):1-41.
    We shall address from a conceptual perspective the duality between algebra and geometry in the framework of the refoundation of algebraic geometry associated to Grothendieck’s theory of schemes. To do so, we shall revisit scheme theory from the standpoint provided by the problem of recovering a mathematical structure A from its representations \ into other similar structures B. This vantage point will allow us to analyze the relationship between the algebra-geometry duality and the structure-semiotics duality. Whereas in classical algebraic geometry (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Extensions of bundles of C*-algebras.Jer Steeger & Benjamin Feintzeig - 2021 - Reviews in Mathematical Physics 33 (8):2150025.
    Bundles of C*-algebras can be used to represent limits of physical theories whose algebraic structure depends on the value of a parameter. The primary example is the ℏ→0 limit of the C*-algebras of physical quantities in quantum theories, represented in the framework of strict deformation quantization. In this paper, we understand such limiting procedures in terms of the extension of a bundle of C*-algebras to some limiting value of a parameter. We prove existence and uniqueness results for such extensions. Moreover, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Integrated Information Theory facing the Hard problem of consciousness.Wael Basille - 2020 - Dissertation, Sorbonne Université
    The Integrated Information Theory (IIT) formulated for the first time in 2004 by the neuroscientist Giulio Tononi, is a theoretical framework aiming to scientifically explain phenomenal consciousness. The IIT is presented in the first part of this work. Broadly speaking, integrated information is an abstract quantitative measure of the causal power a system has on itself. The main claim of IIT is the identity between informational structures and experience. The nature of this identity will be the subject of the second (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Is the classical limit “singular”?Jer Steeger & Benjamin H. Feintzeig - 2021 - Studies in History and Philosophy of Science Part A 88 (C):263-279.
    We argue against claims that the classical ℏ → 0 limit is “singular” in a way that frustrates an eliminative reduction of classical to quantum physics. We show one precise sense in which quantum mechanics and scaling behavior can be used to recover classical mechanics exactly, without making prior reference to the classical theory. To do so, we use the tools of strict deformation quantization, which provides a rigorous way to capture the ℏ → 0 limit. We then use the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Comparing the structures of mathematical objects.Isaac Wilhelm - 2021 - Synthese 199 (3-4):6357-6369.
    A popular method for comparing the structures of mathematical objects, which I call the ‘subset approach’, says that X has more structure than Y just in case X’s automorphisms form a proper subset of Y’s automorphisms. This approach is attractive, in part, because it seems to yield the right results in some comparisons of spacetime structure. But as I show, it yields the wrong results in a number of other cases. The problem is that the subset approach compares structure using (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Category Theory in the hands of physicists, mathematicians, and philosophers. [REVIEW]Mariusz Stopa - 2020 - Philosophical Problems in Science 69:283-293.
    Book review: Category Theory in Physics, Mathematics, and Philosophy, Kuś M., Skowron B., Springer Proc. Phys. 235, 2019, pp.xii+134.
    Download  
     
    Export citation  
     
    Bookmark  
  • Rigour and Proof.Oliver Tatton-Brown - 2023 - Review of Symbolic Logic 16 (2):480-508.
    This paper puts forward a new account of rigorous mathematical proof and its epistemology. One novel feature is a focus on how the skill of reading and writing valid proofs is learnt, as a way of understanding what validity itself amounts to. The account is used to address two current questions in the literature: that of how mathematicians are so good at resolving disputes about validity, and that of whether rigorous proofs are necessarily formalizable.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Advances in Modal Logic, Vol. 13.Nicola Olivetti & Rineke Verbrugge (eds.) - 2020 - College Publications.
    Download  
     
    Export citation  
     
    Bookmark  
  • Syntax-Semantics Interaction in Mathematics.Michael Heller - 2018 - Studia Semiotyczne 32 (2):87-105.
    Mathematical tools of category theory are employed to study the syntax-semantics problem in the philosophy of mathematics. Every category has its internal logic, and if this logic is sufficiently rich, a given category provides semantics for a certain formal theory and, vice versa, for each formal theory one can construct a category, providing a semantics for it. There exists a pair of adjoint functors, Lang and Syn, between a category and a category of theories. These functors describe, in a formal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Elaine Landry,* ed. Categories for the Working Philosopher. [REVIEW]Neil Barton - 2020 - Philosophia Mathematica 28 (1):95-108.
    LandryElaine, * ed. Categories for the Working Philosopher. Oxford University Press, 2017. ISBN 978-0-19-874899-1 ; 978-0-19-106582-8. Pp. xiv + 471.
    Download  
     
    Export citation  
     
    Bookmark  
  • Regarding the ‘Hole Argument’.James Owen Weatherall - 2018 - British Journal for the Philosophy of Science 69 (2):329-350.
    I argue that the hole argument is based on a misleading use of the mathematical formalism of general relativity. If one is attentive to mathematical practice, I will argue, the hole argument is blocked. _1._ Introduction _2._ A Warmup Exercise _3._ The Hole Argument _4._ An Argument from Classical Spacetime Theory _5._ The Hole Argument Revisited.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Structure-preserving Representations, Constitution and the Relative A priori.Thomas Mormann - 2021 - Synthese 198 (Supplement 21):1-24.
    The aim of this paper is to show that a comprehensive account of the role of representations in science should reconsider some neglected theses of the classical philosophy of science proposed in the first decades of the 20th century. More precisely, it is argued that the accounts of Helmholtz and Hertz may be taken as prototypes of representational accounts in which structure preservation plays an essential role. Following Reichenbach, structure-preserving representations provide a useful device for formulating an up-to-date version of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Brain functors: A mathematical model for intentional perception and action.David Ellerman - 2016 - Brain: Broad Research in Artificial Intelligence and Neuroscience 7 (1):5-17.
    Category theory has foundational importance because it provides conceptual lenses to characterize what is important and universal in mathematics—with adjunctions being the primary lens. If adjunctions are so important in mathematics, then perhaps they will isolate concepts of some importance in the empirical sciences. But the applications of adjunctions have been hampered by an overly restrictive formulation that avoids heteromorphisms or hets. By reformulating an adjunction using hets, it is split into two parts, a left and a right semiadjunction. Semiadjunctions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Some resonances between Eastern thought and Integral Biomathics in the framework of the WLIMES formalism for modelling living systems.Plamen L. Simeonov & Andree C. Ehresmann - forthcoming - Progress in Biophysics and Molecular Biology 131 (Special).
    Forty-two years ago, Capra published “The Tao of Physics” (Capra, 1975). In this book (page 17) he writes: “The exploration of the atomic and subatomic world in the twentieth century has …. necessitated a radical revision of many of our basic concepts” and that, unlike ‘classical’ physics, the sub-atomic and quantum “modern physics” shows resonances with Eastern thoughts and “leads us to a view of the world which is very similar to the views held by mystics of all ages and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The logic of partitions: Introduction to the dual of the logic of subsets: The logic of partitions.David Ellerman - 2010 - Review of Symbolic Logic 3 (2):287-350.
    Modern categorical logic as well as the Kripke and topological models of intuitionistic logic suggest that the interpretation of ordinary “propositional” logic should in general be the logic of subsets of a given universe set. Partitions on a set are dual to subsets of a set in the sense of the category-theoretic duality of epimorphisms and monomorphisms—which is reflected in the duality between quotient objects and subobjects throughout algebra. If “propositional” logic is thus seen as the logic of subsets of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • “What is it like to be a bat?”—a pathway to the answer from the integrated information theory.Tsuchiya Naotsugu - 2017 - Philosophy Compass 12 (3):e12407.
    What does it feel like to be a bat? Is conscious experience of echolocation closer to that of vision or audition? Or do bats process echolocation nonconsciously, such that they do not feel anything about echolocation? This famous question of bats' experience, posed by a philosopher Thomas Nagel in 1974, clarifies the difficult nature of the mind–body problem. Why a particular sense, such as vision, has to feel like vision, but not like audition, is totally puzzling. This is especially so (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)The Quantum Logic of Direct-Sum Decompositions: The Dual to the Quantum Logic of Subspaces.David Ellerman - 2017
    Since the pioneering work of Birkhoff and von Neumann, quantum logic has been interpreted as the logic of (closed) subspaces of a Hilbert space. There is a progression from the usual Boolean logic of subsets to the "quantum logic" of subspaces of a general vector space--which is then specialized to the closed subspaces of a Hilbert space. But there is a "dual" progression. The notion of a partition (or quotient set or equivalence relation) is dual (in a category-theoretic sense) to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Contextual semantics in quantum mechanics from a categorical point of view.Vassilios Karakostas & Elias Zafiris - 2017 - Synthese 194 (3).
    The category-theoretic representation of quantum event structures provides a canonical setting for confronting the fundamental problem of truth valuation in quantum mechanics as exemplified, in particular, by Kochen–Specker’s theorem. In the present study, this is realized on the basis of the existence of a categorical adjunction between the category of sheaves of variable local Boolean frames, constituting a topos, and the category of quantum event algebras. We show explicitly that the latter category is equipped with an object of truth values, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Regarding the ‘Hole Argument’.James Owen Weatherall - 2016 - British Journal for the Philosophy of Science:axw012.
    I argue that the Hole Argument is based on a misleading use of the mathematical formalism of general relativity. If one is attentive to mathematical practice, I will argue, the Hole Argument is blocked.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Squares of Oppositions, Commutative Diagrams, and Galois Connections for Topological Spaces and Similarity Structures.Thomas Mormann - manuscript
    The aim of this paper is to elucidate the relationship between Aristotelian conceptual oppositions, commutative diagrams of relational structures, and Galois connections.This is done by investigating in detail some examples of Aristotelian conceptual oppositions arising from topological spaces and similarity structures. The main technical device for this endeavor is the notion of Galois connections of order structures.
    Download  
     
    Export citation  
     
    Bookmark  
  • Theory and Reality : Metaphysics as Second Science.Staffan Angere - unknown
    Theory and Reality is about the connection between true theories and the world. A mathematical framefork for such connections is given, and it is shown how that framework can be used to infer facts about the structure of reality from facts about the structure of true theories, The book starts with an overview of various approaches to metaphysics. Beginning with Quine's programmatic "On what there is", the first chapter then discusses the perils involved in going from language to metaphysics. It (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mac Lane, Bourbaki, and Adjoints: A Heteromorphic Retrospective.David Ellerman - manuscript
    Saunders Mac Lane famously remarked that "Bourbaki just missed" formulating adjoints in a 1948 appendix (written no doubt by Pierre Samuel) to an early draft of Algebre--which then had to wait until Daniel Kan's 1958 paper on adjoint functors. But Mac Lane was using the orthodox treatment of adjoints that only contemplates the object-to-object morphisms within a category, i.e., homomorphisms. When Samuel's treatment is reconsidered in view of the treatment of adjoints using heteromorphisms or hets (object-to-object morphisms between objects in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the self-predicative universals of category theory.David Ellerman - manuscript
    This paper shows how the universals of category theory in mathematics provide a model (in the Platonic Heaven of mathematics) for the self-predicative strand of Plato's Theory of Forms as well as for the idea of a "concrete universal" in Hegel and similar ideas of paradigmatic exemplars in ordinary thought. The paper also shows how the always-self-predicative universals of category theory provide the "opposite bookend" to the never-self-predicative universals of iterative set theory and thus that the paradoxes arose from having (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Adjoint and Brain Functors.David Ellerman - 2016 - Axiomathes 26 (1):41-61.
    There is some consensus among orthodox category theorists that the concept of adjoint functors is the most important concept contributed to mathematics by category theory. We give a heterodox treatment of adjoints using heteromorphisms that parses an adjunction into two separate parts. Then these separate parts can be recombined in a new way to define a cognate concept, the brain functor, to abstractly model the functions of perception and action of a brain. The treatment uses relatively simple category theory and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Concrete Universals: A Modern Treatment using Category Theory.David Ellerman - 2014 - AL-Mukhatabat.
    Today it would be considered "bad Platonic metaphysics" to think that among all the concrete instances of a property there could be a universal instance so that all instances had the property by virtue of participating in that concrete universal. Yet there is a mathematical theory, category theory, dating from the mid-20th century that shows how to precisely model concrete universals within the "Platonic Heaven" of mathematics. This paper, written for the philosophical logician, develops this category-theoretic treatment of concrete universals (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Structure of Scientific Theories.Rasmus Grønfeldt Winther - 2015 - Stanford Encyclopedia of Philosophy.
    Scientific inquiry has led to immense explanatory and technological successes, partly as a result of the pervasiveness of scientific theories. Relativity theory, evolutionary theory, and plate tectonics were, and continue to be, wildly successful families of theories within physics, biology, and geology. Other powerful theory clusters inhabit comparatively recent disciplines such as cognitive science, climate science, molecular biology, microeconomics, and Geographic Information Science (GIS). Effective scientific theories magnify understanding, help supply legitimate explanations, and assist in formulating predictions. Moving from their (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Mathematical Aspects of Similarity and Quasi-analysis - Order, Topology, and Sheaves.Thomas Mormann - manuscript
    The concept of similarity has had a rather mixed reputation in philosophy and the sciences. On the one hand, philosophers such as Goodman and Quine emphasized the „logically repugnant“ and „insidious“ character of the concept of similarity that allegedly renders it inaccessible for a proper logical analysis. On the other hand, a philosopher such as Carnap assigned a central role to similarity in his constitutional theory. Moreover, the importance and perhaps even indispensibility of the concept of similarity for many empirical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Heyting Mereology as a Framework for Spatial Reasoning.Thomas Mormann - 2013 - Axiomathes 23 (1):137- 164.
    In this paper it is shown that Heyting and Co-Heyting mereological systems provide a convenient conceptual framework for spatial reasoning, in which spatial concepts such as connectedness, interior parts, (exterior) contact, and boundary can be defined in a natural and intuitively appealing way. This fact refutes the wide-spread contention that mereology cannot deal with the more advanced aspects of spatial reasoning and therefore has to be enhanced by further non-mereological concepts to overcome its congenital limitations. The allegedly unmereological concept of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Toward a Theory of the Pragmatic A Priori. From Carnap to Lewis and Beyond.Thomas Mormann - 2012 - Rudolf Carnap and the Legacy of Logical Empiricism 16:113 - 132.
    The aim of this paper is make a contribution to the ongoing search for an adequate concept of the a priori element in scientific knowledge. The point of departure is C.I. Lewis’s account of a pragmatic a priori put forward in his "Mind and the World Order" (1929). Recently, Hasok Chang in "Contingent Transcendental Arguments for Metaphysical Principles" (2008) reconsidered Lewis’s pragmatic a priori and proposed to conceive it as the basic ingredient of the dynamics of an embodied scientific reason. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Structural Mereology: A Formal Elucidation and Some Metaphysical Applications.Thomas Mormann - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  • On three arguments against categorical structuralism.Makmiller Pedroso - 2009 - Synthese 170 (1):21 - 31.
    Some mathematicians and philosophers contend that set theory plays a foundational role in mathematics. However, the development of category theory during the second half of the twentieth century has encouraged the view that this theory can provide a structuralist alternative to set-theoretical foundations. Against this tendency, criticisms have been made that category theory depends on set-theoretical notions and, because of this, category theory fails to show that set-theoretical foundations are dispensable. The goal of this paper is to show that these (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Adjoints and emergence: Applications of a new theory of adjoint functors. [REVIEW]David Ellerman - 2007 - Axiomathes 17 (1):19-39.
    Since its formal definition over sixty years ago, category theory has been increasingly recognized as having a foundational role in mathematics. It provides the conceptual lens to isolate and characterize the structures with importance and universality in mathematics. The notion of an adjunction (a pair of adjoint functors) has moved to center-stage as the principal lens. The central feature of an adjunction is what might be called “determination through universals” based on universal mapping properties. A recently developed “heteromorphic” theory about (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Representation and Spacetime: The Hole Argument Revisited.Aboutorab Yaghmaie, Bijan Ahmadi Kakavandi, Saeed Masoumi & Morteza Moniri - 2022 - International Studies in the Philosophy of Science 35 (2):171-188.
    Ladyman and Presnell have recently argued that the Hole argument is naturally resolved when spacetime is represented within homotopy type theory rather than set theory. The core idea behind their proposal is that the argument does not confront us with any indeterminism, since the set-theoretically different representations of spacetime involved in the argument are homotopy type-theoretically identical. In this article, we will offer a new resolution based on ZFC set theory to the argument. It neither relies on a constructive-intuitionistic form (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Deduction and definability in infinite statistical systems.Benjamin H. Feintzeig - 2017 - Synthese 196 (5):1-31.
    Classical accounts of intertheoretic reduction involve two pieces: first, the new terms of the higher-level theory must be definable from the terms of the lower-level theory, and second, the claims of the higher-level theory must be deducible from the lower-level theory along with these definitions. The status of each of these pieces becomes controversial when the alleged reduction involves an infinite limit, as in statistical mechanics. Can one define features of or deduce the behavior of an infinite idealized system from (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Are Newtonian Gravitation and Geometrized Newtonian Gravitation Theoretically Equivalent?James Owen Weatherall - 2016 - Erkenntnis 81 (5):1073-1091.
    I argue that a criterion of theoretical equivalence due to Glymour :227–251, 1977) does not capture an important sense in which two theories may be equivalent. I then motivate and state an alternative criterion that does capture the sense of equivalence I have in mind. The principal claim of the paper is that relative to this second criterion, the answer to the question posed in the title is “yes”, at least on one natural understanding of Newtonian gravitation.
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • A Categorical Solution to the Grue Paradox.Tatsuya Yoshii & Jun Otsuka - forthcoming - British Journal for the Philosophy of Science.
    Download  
     
    Export citation  
     
    Bookmark  
  • Beyond Linguistic Interpretation in Theory Comparison.Toby Meadows - 2024 - Review of Symbolic Logic 17 (3):819-859.
    This paper assembles a unifying framework encompassing a wide variety of mathematical instruments used to compare different theories. The main theme will be the idea that theory comparison techniques are most easily grasped and organized through the lens of category theory. The paper develops a table of different equivalence relations between theories and then answers many of the questions about how those equivalence relations are themselves related to each other. We show that Morita equivalence fits into this framework and provide (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Morphisms Between Aristotelian Diagrams.Alexander De Klerck, Leander Vignero & Lorenz Demey - 2024 - Logica Universalis 18 (1):49-83.
    In logical geometry, Aristotelian diagrams are studied in a precise and systematic way. Although there has recently been a good amount of progress in logical geometry, it is still unknown which underlying mathematical framework is best suited for formalizing the study of these diagrams. Hence, in this paper, the main aim is to formulate such a framework, using the powerful language of category theory. We build multiple categories, which all have Aristotelian diagrams as their objects, while having different kinds of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Definable categorical equivalence.Laurenz Hudetz - 2019 - Philosophy of Science 86 (1):47-75.
    This article proposes to explicate theoretical equivalence by supplementing formal equivalence criteria with preservation conditions concerning interpretation. I argue that both the internal structure of models and choices of morphisms are aspects of formalisms that are relevant when it comes to their interpretation. Hence, a formal criterion suitable for being supplemented with preservation conditions concerning interpretation should take these two aspects into account. The two currently most important criteria—gener-alized definitional equivalence (Morita equivalence) and categorical equivalence—are not optimal in this respect. (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Category-Theoretic Structure and Radical Ontic Structural Realism.Jonathan Bain - 2013 - Synthese 190 (9):1621-1635.
    Radical Ontic Structural Realism (ROSR) claims that structure exists independently of objects that may instantiate it. Critics of ROSR contend that this claim is conceptually incoherent, insofar as, (i) it entails there can be relations without relata, and (ii) there is a conceptual dependence between relations and relata. In this essay I suggest that (ii) is motivated by a set-theoretic formulation of structure, and that adopting a category-theoretic formulation may provide ROSR with more support. In particular, I consider how a (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Category theory.Jean-Pierre Marquis - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Theoretical Equivalence in Physics.James Owen Weatherall - unknown
    I review the philosophical literature on the question of when two physical theories are equivalent. This includes a discussion of empirical equivalence, which is often taken to be necessary, and sometimes taken to be sufficient, for theoretical equivalence; and "interpretational" equivalence, which is the idea that two theories are equivalent just in case they have the same interpretation. It also includes a discussion of several formal notions of equivalence that have been considered in the recent philosophical literature, including definitional equivalence (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Quantum mechanics over sets: a pedagogical model with non-commutative finite probability theory as its quantum probability calculus.David Ellerman - 2017 - Synthese (12):4863-4896.
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability calculus. The previous attempts (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A Categorial Semantic Representation of Quantum Event Structures.Elias Zafiris & Vassilios Karakostas - 2013 - Foundations of Physics 43 (9):1090-1123.
    The overwhelming majority of the attempts in exploring the problems related to quantum logical structures and their interpretation have been based on an underlying set-theoretic syntactic language. We propose a transition in the involved syntactic language to tackle these problems from the set-theoretic to the category-theoretic mode, together with a study of the consequent semantic transition in the logical interpretation of quantum event structures. In the present work, this is realized by representing categorically the global structure of a quantum algebra (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Enriched category as a model of qualia structure based on similarity judgements.Naotsugu Tsuchiya, Steven Phillips & Hayato Saigo - 2022 - Consciousness and Cognition 101 (C):103319.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the Structure and Function of Scientific Perspectivism in Categorical Quantum Mechanics.Vassilios Karakostas & Elias Zafiris - 2022 - British Journal for the Philosophy of Science 73 (3):811-848.
    Contemporary scientific perspectivism is primarily viewed as a methodological framework of how we obtain and form scientific knowledge of nature, through a broadly perspectivist process, especially, with reference to quantum mechanics. In the present study, this is implemented by representing categorically the global structure of a quantum algebra of events in terms of structured interconnected families of local Boolean probing frames, realized as suitable perspectives or contexts for measuring physical quantities. The essential philosophical meaning of the proposed approach implies that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Representational Capacities, with an Application to General Relativity.Samuel C. Fletcher - 2020 - Foundations of Physics 50 (4):228-249.
    Recent work on the hole argument in general relativity by Weatherall has drawn attention to the neglected concept of models’ representational capacities. I argue for several theses about the structure of these capacities, including that they should be understood not as many-to-one relations from models to the world, but in general as many-to-many relations constrained by the models’ isomorphisms. I then compare these ideas with a recent argument by Belot for the claim that some isometries “generate new possibilities” in general (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations