References in:
Add references
You must login to add references.




Achieving understanding of nature is one of the aims of science. In this paper we offer an analysis of the nature of scientific understanding that accords with actual scientific practice and accommodates the historical diversity of conceptions of understanding. Its core idea is a general criterion for the intelligibility of scientific theories that is essentially contextual: which theories conform to this criterion depends on contextual factors, and can change in the course of time. Our analysis provides a general account of (...) 









According to one large family of views, scientific explanations explain a phenomenon (such as an event or a regularity) by subsuming it under a general representation, model, prototype, or schema (see Bechtel, W., & Abrahamsen, A. (2005). Explanation: A mechanist alternative. Studies in History and Philosophy of Biological and Biomedical Sciences, 36(2), 421–441; Churchland, P. M. (1989). A neurocomputational perspective: The nature of mind and the structure of science. Cambridge: MIT Press; Darden (2006); Hempel, C. G. (1965). Aspects of scientific (...) 

Scientists and laypeople alike use the sense of understanding that an explanation conveys as a cue to good or correct explanation. Although the occurrence of this sense or feeling of understanding is neither necessary nor sufficient for good explanation, it does drive judgments of the plausibility and, ultimately, the acceptability, of an explanation. This paper presents evidence that the sense of understanding is in part the routine consequence of two welldocumented biases in cognitive psychology: overconfidence and hindsight. In light of (...) 

“Now, in calm weather, to swim in the open ocean is as easy to the practised swimmer as to ride in a springcarriage ashore. But the awful lonesomeness is intolerable. The intense concentration of self in the middle of such a heartless immensity, my God! who can tell it? Mark, how when sailors in a dead calm bathe in the open sea—mark how closely they hug their ship and only coast along her sides.” (Herman Melville, Moby Dick, Chapter 94). 

Unlike explanation in science, explanation in mathematics has received relatively scant attention from philosophers. Whereas there are canonical examples of scientific explanations, there are few examples that have become widely accepted as exhibiting the distinction between mathematical proofs that explain why some mathematical theorem holds and proofs that merely prove that the theorem holds without revealing the reason why it holds. This essay offers some examples of proofs that mathematicians have considered explanatory, and it argues that these examples suggest a (...) 





In this paper we discuss three interrelated questions. First: is explanation in mathematics a topic that philosophers of mathematics can legitimately investigate? Second: are the specific aims that philosophers of mathematical explanation set themselves legitimate? Finally: are the models of explanation developed by philosophers of science useful tools for philosophers of mathematical explanation? We argue that the answer to all these questions is positive. Our views are completely opposite to the views that Mark Zelcer has put forward recently. Throughout this (...) 

Although in the past three decades interest in mathematical explanation revived, recent literature on the subject seems to neglect the strict connection between explanation and discovery. In this paper I sketch an alternative approach that takes such connection into account. My approach is a revised version of one originally considered by Descartes. The main difference is that my approach is in terms of the analytic method, which is a method of discovery prior to axiomatized mathematics, whereas Descartes’s approach is in (...) 

When scientist investigate why things happen, they aim at giving an explanation. But what does a scientific explanation look like? In the first chapter (Theories of Scientific Explanation) of this book, the milestones in the debate on how to characterize scientific explanations are exposed. The second chapter (How to Study Scientific Explanation?) scrutinizes the workingmethod of three important philosophers of explanation, Carl Hempel, Philip Kitcher and Wesley Salmon and shows what went wrong. Next, it is the responsibility of current philosophers (...) 

(2002). Philosophy of Science 72 (January), 198208. 

By contrasting three general conceptions of scientific explanation, this paper seeks to clarify the explanandum and to exhibit the fundamental philosophical issues involved in the project of explicating scientific explanation. The three conceptionsepistemic, modal, and ontichave both historical and contemporary importance. In the context of Laplacian determinism, they do not seem importantly distinct, but in the context of irreducibly statistical explanations, the three are seen to diverge sharply. The paper argues for a causal/mechanical version of the ontic conception, and concludes (...) 

This paper identifies one way that a mathematical proof can be more explanatory than another proof. This is by invoking a more abstract kind of entity than the topic of the theorem. These abstract mathematical explanations are identified via an investigation of a canonical instance of modern mathematics: the Galois theory proof that there is no general solution in radicals for fifthdegree polynomial equations. I claim that abstract explanations are best seen as describing a special sort of dependence relation between (...) 







