Switch to: References

Add citations

You must login to add citations.
  1. Symmetry and Reformulation: On Intellectual Progress in Science and Mathematics.Josh Hunt - 2022 - Dissertation, University of Michigan
    Science and mathematics continually change in their tools, methods, and concepts. Many of these changes are not just modifications but progress---steps to be admired. But what constitutes progress? This dissertation addresses one central source of intellectual advancement in both disciplines: reformulating a problem-solving plan into a new, logically compatible one. For short, I call these cases of compatible problem-solving plans "reformulations." Two aspects of reformulations are puzzling. First, reformulating is often unnecessary. Given that we could already solve a problem using (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Counter Countermathematical Explanations.Atoosa Kasirzadeh - 2021 - Erkenntnis 88 (6):2537-2560.
    Recently, there have been several attempts to generalize the counterfactual theory of causal explanations to mathematical explanations. The central idea of these attempts is to use conditionals whose antecedents express a mathematical impossibility. Such countermathematical conditionals are plugged into the explanatory scheme of the counterfactual theory and—so is the hope—capture mathematical explanations. Here, I dash the hope that countermathematical explanations simply parallel counterfactual explanations. In particular, I show that explanations based on countermathematicals are susceptible to three problems counterfactual explanations do (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Reasons explanations (of actions) as structural explanations.Megan Fritts - 2021 - Synthese 199 (5-6):12683-12704.
    Non-causal accounts of action explanation have long been criticized for lacking a positive thesis, relying primarily on negative arguments to undercut the standard Causal Theory of Action The Stanford Encyclopedia of Philosophy, 2016). Additionally, it is commonly thought that non-causal accounts fail to provide an answer to Donald Davidson’s challenge for theories of reasons explanations of actions. According to Davidson’s challenge, a plausible non-causal account of reasons explanations must provide a way of connecting an agent’s reasons, not only to what (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Salience and metaphysical explanation.Phil Corkum - 2021 - Synthese 199 (3-4):10771-10792.
    Metaphysical explanations, unlike many other kinds of explanation, are standardly thought to be insensitive to our epistemic situation and so are not evaluable by cognitive values such as salience. I consider a case study that challenges this view. Some properties are distributed over an extension. For example, the property of being polka-dotted red on white, when instantiated, is distributed over a surface. Similar properties have been put to work in a variety of explanatory tasks in recent metaphysics, including: providing an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematicians’ Assessments of the Explanatory Value of Proofs.Juan Pablo Mejía Ramos, Tanya Evans, Colin Rittberg & Matthew Inglis - 2021 - Axiomathes 31 (5):575-599.
    The literature on mathematical explanation contains numerous examples of explanatory, and not so explanatory proofs. In this paper we report results of an empirical study aimed at investigating mathematicians’ notion of explanatoriness, and its relationship to accounts of mathematical explanation. Using a Comparative Judgement approach, we asked 38 mathematicians to assess the explanatory value of several proofs of the same proposition. We found an extremely high level of agreement among mathematicians, and some inconsistencies between their assessments and claims in the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Epistemic Dependence and Understanding: Reformulating through Symmetry.Josh Hunt - 2023 - British Journal for the Philosophy of Science 74 (4):941-974.
    Science frequently gives us multiple, compatible ways of solving the same problem or formulating the same theory. These compatible formulations change our understanding of the world, despite providing the same explanations. According to what I call "conceptualism," reformulations change our understanding by clarifying the epistemic structure of theories. I illustrate conceptualism by analyzing a typical example of symmetry-based reformulation in chemical physics. This case study poses a problem for "explanationism," the rival thesis that differences in understanding require ontic explanatory differences. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Demostraciones «tópicamente puras» en la práctica matemática: un abordaje elucidatorio.Guillermo Nigro Puente - 2020 - Dissertation, Universidad de la República Uruguay
    Download  
     
    Export citation  
     
    Bookmark  
  • The Prospects for a Monist Theory of Non-causal Explanation in Science and Mathematics.Alexander Reutlinger, Mark Colyvan & Karolina Krzyżanowska - 2020 - Erkenntnis 87 (4):1773-1793.
    We explore the prospects of a monist account of explanation for both non-causal explanations in science and pure mathematics. Our starting point is the counterfactual theory of explanation for explanations in science, as advocated in the recent literature on explanation. We argue that, despite the obvious differences between mathematical and scientific explanation, the CTE can be extended to cover both non-causal explanations in science and mathematical explanations. In particular, a successful application of the CTE to mathematical explanations requires us to (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Proving Quadratic Reciprocity: Explanation, Disagreement, Transparency and Depth.William D’Alessandro - 2020 - Synthese (9):1-44.
    Gauss’s quadratic reciprocity theorem is among the most important results in the history of number theory. It’s also among the most mysterious: since its discovery in the late 18th century, mathematicians have regarded reciprocity as a deeply surprising fact in need of explanation. Intriguingly, though, there’s little agreement on how the theorem is best explained. Two quite different kinds of proof are most often praised as explanatory: an elementary argument that gives the theorem an intuitive geometric interpretation, due to Gauss (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A Counterfactual Approach to Explanation in Mathematics.Sam Baron, Mark Colyvan & David Ripley - 2020 - Philosophia Mathematica 28 (1):1-34.
    ABSTRACT Our goal in this paper is to extend counterfactual accounts of scientific explanation to mathematics. Our focus, in particular, is on intra-mathematical explanations: explanations of one mathematical fact in terms of another. We offer a basic counterfactual theory of intra-mathematical explanations, before modelling the explanatory structure of a test case using counterfactual machinery. We finish by considering the application of counterpossibles to mathematical explanation, and explore a second test case along these lines.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)Teaching and Learning Guide for: Explanation in Mathematics: Proofs and Practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11):e12629.
    This is a teaching and learning guide to accompany "Explanation in Mathematics: Proofs and Practice".
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Explanation by Law.Sam Baron - 2019 - British Journal for the Philosophy of Science 70 (3):683-717.
    Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light of two difficulties that the basic theory faces. The final view (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • (1 other version)Explanation in mathematics: Proofs and practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11):e12629.
    Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if so, how do (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Metaphysically explanatory unification.David Mark Kovacs - 2020 - Philosophical Studies 177 (6):1659-1683.
    This paper develops and motivates a unification theory of metaphysical explanation, or as I will call it, Metaphysical Unificationism. The theory’s main inspiration is the unification account of scientific explanation, according to which explanatoriness is a holistic feature of theories that derive a large number of explananda from a meager set of explanantia, using a small number of argument patterns. In developing Metaphysical Unificationism, I will point out that it has a number of interesting consequences. The view offers a novel (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Viewing-as explanations and ontic dependence.William D’Alessandro - 2020 - Philosophical Studies 177 (3):769-792.
    According to a widespread view in metaphysics and philosophy of science, all explanations involve relations of ontic dependence between the items appearing in the explanandum and the items appearing in the explanans. I argue that a family of mathematical cases, which I call “viewing-as explanations”, are incompatible with the Dependence Thesis. These cases, I claim, feature genuine explanations that aren’t supported by ontic dependence relations. Hence the thesis isn’t true in general. The first part of the paper defends this claim (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Brute necessity.James Van Cleve - 2018 - Philosophy Compass 13 (9):e12516.
    In a growing number of papers, one encounters arguments to the effect that certain philosophical views are objectionable because they would imply that there are necessary truths for whose necessity there is no explanation. That is, they imply that there are propositions p such that (a) it is necessary that p, but (b) there is no explanation why it is necessary that p. For short, they imply that there are “brute necessities.” Therefore, the arguments conclude, the views in question should (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Mathematical Explanation: A Contextual Approach.Sven Delarivière, Joachim Frans & Bart Van Kerkhove - 2017 - Journal of Indian Council of Philosophical Research 34 (2):309-329.
    PurposeIn this article, we aim to present and defend a contextual approach to mathematical explanation.MethodTo do this, we introduce an epistemic reading of mathematical explanation.ResultsThe epistemic reading not only clarifies the link between mathematical explanation and mathematical understanding, but also allows us to explicate some contextual factors governing explanation. We then show how several accounts of mathematical explanation can be read in this approach.ConclusionThe contextual approach defended here clears up the notion of explanation and pushes us towards a pluralist vision (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • I Ought, Therefore I Can Obey.Peter Vranas - 2018 - Philosophers' Imprint 18.
    According to typical ought-implies-can principles, if you have an obligation to vaccinate me tomorrow, then you can vaccinate me tomorrow. Such principles are uninformative about conditional obligations: what if you only have an obligation to vaccinate me tomorrow if you synthesize a vaccine today? Then maybe you cannot vaccinate me tomorrow ; what you can do instead, I propose, is make it the case that the conditional obligation is not violated. More generally, I propose the ought-implies-can-obey principle: an agent has (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In defense (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Grounding and the argument from explanatoriness.David Mark Kovacs - 2017 - Philosophical Studies 174 (12):2927-2952.
    In recent years, metaphysics has undergone what some describe as a revolution: it has become standard to understand a vast array of questions as questions about grounding, a metaphysical notion of determination. Why should we believe in grounding, though? Supporters of the revolution often gesture at what I call the Argument from Explanatoriness: the notion of grounding is somehow indispensable to a metaphysical type of explanation. I challenge this argument and along the way develop a “reactionary” view, according to which (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Mathematical Fit: A Case Study†.Manya Raman-Sundström & Lars-Daniel Öhman - 2016 - Philosophia Mathematica 26 (2):184-210.
    Mathematicians routinely pass judgements on mathematical proofs. A proof might be elegant, cumbersome, beautiful, or awkward. Perhaps the highest praise is that a proof is right, that is, that the proof fits the theorem in an optimal way. It is also common to judge that one proof fits better than another, or that a proof does not fit a theorem at all. This paper attempts to clarify the notion of mathematical fit. We suggest six criteria that distinguish proofs as being (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Does the Counterfactual Theory of Explanation Apply to Non-Causal Explanations in Metaphysics?Alexander Reutlinger - 2016 - European Journal for Philosophy of Science:1-18.
    In the recent philosophy of explanation, a growing attention to and discussion of non-causal explanations has emerged, as there seem to be compelling examples of non-causal explanations in the sciences, in pure mathematics, and in metaphysics. I defend the claim that the counterfactual theory of explanation (CTE) captures the explanatory character of both non-causal scientific and metaphysical explanations. According to the CTE, scientific and metaphysical explanations are explanatory by virtue of revealing counterfactual dependencies between the explanandum and the explanans. I (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Is Mathematics a Domain for Philosophers of Explanation?Erik Weber & Joachim Frans - 2017 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (1):125-142.
    In this paper we discuss three interrelated questions. First: is explanation in mathematics a topic that philosophers of mathematics can legitimately investigate? Second: are the specific aims that philosophers of mathematical explanation set themselves legitimate? Finally: are the models of explanation developed by philosophers of science useful tools for philosophers of mathematical explanation? We argue that the answer to all these questions is positive. Our views are completely opposite to the views that Mark Zelcer has put forward recently. Throughout this (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Reductio ad absurdum from a dialogical perspective.Catarina Dutilh Novaes - 2016 - Philosophical Studies 173 (10):2605-2628.
    It is well known that reductio ad absurdum arguments raise a number of interesting philosophical questions. What does it mean to assert something with the precise goal of then showing it to be false, i.e. because it leads to absurd conclusions? What kind of absurdity do we obtain? Moreover, in the mathematics education literature number of studies have shown that students find it difficult to truly comprehend the idea of reductio proofs, which indicates the cognitive complexity of these constructions. In (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Understanding without Justification or Belief.Finnur Dellsén - 2017 - Ratio 30 (3):239-254.
    In recent years there has been a resurgence of interest among epistemologists in the nature of understanding, with some authors arguing that understanding should replace knowledge as the primary focus of epistemology. But what is understanding? According to what is often called the standard view, understanding is a species of knowledge. Although this view has recently been challenged in various ways, even the critics of the standard view have assumed that understanding requires justification and belief. I argue that it requires (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Inference to the best explanation as supporting the expansion of mathematicians’ ontological commitments.Marc Lange - 2022 - Synthese 200 (2):1-26.
    This paper argues that in mathematical practice, conjectures are sometimes confirmed by “Inference to the Best Explanation” as applied to some mathematical evidence. IBE operates in mathematics in the same way as IBE in science. When applied to empirical evidence, IBE sometimes helps to justify the expansion of scientists’ ontological commitments. Analogously, when applied to mathematical evidence, IBE sometimes helps to justify mathematicians' in expanding the range of their ontological commitments. IBE supplements other forms of non-deductive reasoning in mathematics, avoiding (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Unificatory Understanding and Explanatory Proofs.Joachim Frans - 2020 - Foundations of Science 26 (4):1105-1127.
    One of the central aims of the philosophical analysis of mathematical explanation is to determine how one can distinguish explanatory proofs from non-explanatory proofs. In this paper, I take a closer look at the current status of the debate, and what the challenges for the philosophical analysis of explanatory proofs are. In order to provide an answer to these challenges, I suggest we start from analysing the concept understanding. More precisely, I will defend four claims: understanding is a condition for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Do mathematical explanations have instrumental value?Rebecca Lea Morris - 2019 - Synthese (2):1-20.
    Scientific explanations are widely recognized to have instrumental value by helping scientists make predictions and control their environment. In this paper I raise, and provide a first analysis of, the question whether explanatory proofs in mathematics have analogous instrumental value. I first identify an important goal in mathematical practice: reusing resources from existing proofs to solve new problems. I then consider the more specific question: do explanatory proofs have instrumental value by promoting reuse of the resources they contain? In general, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Does the counterfactual theory of explanation apply to non-causal explanations in metaphysics?Alexander Reutlinger - 2017 - European Journal for Philosophy of Science 7 (2):239-256.
    In the recent philosophy of explanation, a growing attention to and discussion of non-causal explanations has emerged, as there seem to be compelling examples of non-causal explanations in the sciences, in pure mathematics, and in metaphysics. I defend the claim that the counterfactual theory of explanation captures the explanatory character of both non-causal scientific and metaphysical explanations. According to the CTE, scientific and metaphysical explanations are explanatory by virtue of revealing counterfactual dependencies between the explanandum and the explanans. I support (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Reply to Ellis and to Handfield on essentialism, laws, and counterfactuals.Marc Lange - 2005 - Australasian Journal of Philosophy 83 (4):581 – 588.
    In Lange 2004a, I argued that 'scientific essentialism' [Ellis 2001 cannot account for the characteristic relation between laws and counterfactuals without undergoing considerable ad hoc tinkering. In recent papers, Brian Ellis 2005 and Toby Handfield 2005 have defended essentialism against my charge. Here I argue that Ellis's and Handfield's replies fail. Even in ordinary counterfactual reasoning, the 'closest possible world' where the electron's electric charge is 5% greater may have less overlap with the actual world in its fundamental natural kinds (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Noetic Account of Explanation in Mathematics.William D’Alessandro & Ellen Lehet - forthcoming - Philosophical Quarterly.
    We defend a noetic account of intramathematical explanation. On this view, a piece of mathematics is explanatory just in case it produces understanding of an appropriate type. We motivate the view by presenting some appealing features of noeticism. We then discuss and criticize the most prominent extant version of noeticism, due to Inglis and Mejía Ramos, which identifies explanatory understanding with the possession of well-organized cognitive schemas. Finally, we present a novel noetic account. On our view, explanatory understanding arises from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Paradox of Sufficient Reason.Samuel Levey - 2016 - Philosophical Review Recent Issues 125 (3):397-430.
    It can be shown by means of a paradox that, given the Principle of Sufficient Reason, there is no conjunction of all contingent truths. The question is, or ought to be, how to interpret that result: _Quid sibi velit?_ A celebrated argument against PSR due to Peter van Inwagen and Jonathan Bennett in effect interprets the result to mean that PSR entails that there are no contingent truths. But reflection on parallels in philosophy of mathematics shows it can equally be (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Explanation, Existence and Natural Properties in Mathematics – A Case Study: Desargues’ Theorem.Marc Lange - 2015 - Dialectica 69 (4):435-472.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Functional explanation in mathematics.Matthew Inglis & Juan Pablo Mejía Ramos - 2019 - Synthese 198 (26):6369-6392.
    Mathematical explanations are poorly understood. Although mathematicians seem to regularly suggest that some proofs are explanatory whereas others are not, none of the philosophical accounts of what such claims mean has become widely accepted. In this paper we explore Wilkenfeld’s suggestion that explanations are those sorts of things that generate understanding. By considering a basic model of human cognitive architecture, we suggest that existing accounts of mathematical explanation are all derivable consequences of Wilkenfeld’s ‘functional explanation’ proposal. We therefore argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • There Are No Mathematical Explanations.Jaakko Kuorikoski - 2021 - Philosophy of Science 88 (2):189-212.
    If ontic dependence is the basis of explanation, there cannot be mathematical explanations. Accounting for the explanatory dependency between mathematical properties and empirical phenomena poses i...
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Philosophy of mathematical practice: A primer for mathematics educators.Yacin Hamami & Rebecca Morris - 2020 - ZDM Mathematics Education 52:1113–1126.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Euler’s Königsberg: the explanatory power of mathematics.Tim Räz - 2018 - European Journal for Philosophy of Science 8 (3):331-346.
    The present paper provides an analysis of Euler’s solutions to the Königsberg bridges problem. Euler proposes three different solutions to the problem, addressing their strengths and weaknesses along the way. I put the analysis of Euler’s paper to work in the philosophical discussion on mathematical explanations. I propose that the key ingredient to a good explanation is the degree to which it provides relevant information. Providing relevant information is based on knowledge of the structure in question, graphs in the present (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mathematical Explanations that are Not Proofs.Marc Lange - 2018 - Erkenntnis 83 (6):1285-1302.
    Explanation in mathematics has recently attracted increased attention from philosophers. The central issue is taken to be how to distinguish between two types of mathematical proofs: those that explain why what they prove is true and those that merely prove theorems without explaining why they are true. This way of framing the issue neglects the possibility of mathematical explanations that are not proofs at all. This paper addresses what it would take for a non-proof to explain. The paper focuses on (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Mathematics and the world: explanation and representation.John-Hamish Heron - 2017 - Dissertation, King’s College London
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Explanation beyond Explanatory Proof.William D’Alessandro - 2017 - British Journal for the Philosophy of Science 71 (2):581-603.
    Much recent work on mathematical explanation has presupposed that the phenomenon involves explanatory proofs in an essential way. I argue that this view, ‘proof chauvinism’, is false. I then look in some detail at the explanation of the solvability of polynomial equations provided by Galois theory, which has often been thought to revolve around an explanatory proof. The article concludes with some general worries about the effects of chauvinism on the theory of mathematical explanation. 1Introduction 2Why I Am Not a (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Comparing Mathematical Explanations.Isaac Wilhelm - 2023 - British Journal for the Philosophy of Science 74 (1):269-290.
    Philosophers have developed several detailed accounts of what makes some mathematical proofs explanatory. Significantly less attention has been paid, however, to what makes some proofs more explanatory than other proofs. That is problematic, since the reasons for thinking that some proofs explain are also reasons for thinking that some proofs are more explanatory than others. So in this paper, I develop an account of comparative explanation in mathematics. I propose a theory of the `at least as explanatory as' relation among (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Euler’s Königsberg: the explanatory power of mathematics.Tim Räz - 2017 - European Journal for Philosophy of Science 8:331–46.
    The present paper provides an analysis of Euler’s solutions to the Königsberg bridges problem. Euler proposes three different solutions to the problem, addressing their strengths and weaknesses along the way. I put the analysis of Euler’s paper to work in the philosophical discussion on mathematical explanations. I propose that the key ingredient to a good explanation is the degree to which it provides relevant information. Providing relevant information is based on knowledge of the structure in question, graphs in the present (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations