Switch to: References

Add citations

You must login to add citations.
  1. Is Mathematics a Domain for Philosophers of Explanation?Erik Weber & Joachim Frans - 2017 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (1):125-142.
    In this paper we discuss three interrelated questions. First: is explanation in mathematics a topic that philosophers of mathematics can legitimately investigate? Second: are the specific aims that philosophers of mathematical explanation set themselves legitimate? Finally: are the models of explanation developed by philosophers of science useful tools for philosophers of mathematical explanation? We argue that the answer to all these questions is positive. Our views are completely opposite to the views that Mark Zelcer has put forward recently. Throughout this (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Turing Patterns and Biological Explanation.Maria Serban - 2017 - Disputatio 9 (47):529-552.
    Turing patterns are a class of minimal mathematical models that have been used to discover and conceptualize certain abstract features of early biological development. This paper examines a range of these minimal models in order to articulate and elaborate a philosophical analysis of their epistemic uses. It is argued that minimal mathematical models aid in structuring the epistemic practices of biology by providing precise descriptions of the quantitative relations between various features of the complex systems, generating novel predictions that can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Eulerian Routing in Practice.Davide Rizza - 2024 - Erkenntnis 89 (2):817-839.
    The Königsberg bridge problem has played a central role in recent philosophical discussions of mathematical explanation. In this paper I look at it from a novel perspective, which is independent of explanatory concerns. Instead of restricting attention to the solved Königsberg bridge problem, I consider Euler’s construction of a solution method for the problem and discuss two later integrations of Euler’s approach into a more structured methodology, arisen in operations research and genetics respectively. By examining Euler’s work and its later (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Explanations: An Analysis Via Formal Proofs and Conceptual Complexity.Francesca Poggiolesi - 2024 - Philosophia Mathematica 32 (2):145-176.
    This paper studies internal (or intra-)mathematical explanations, namely those proofs of mathematical theorems that seem to explain the theorem they prove. The goal of the paper is a rigorous analysis of these explanations. This will be done in two steps. First, we will show how to move from informal proofs of mathematical theorems to a formal presentation that involves proof trees, together with a decomposition of their elements; secondly we will show that those mathematical proofs that are regarded as having (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Otávio Bueno* and Steven French.**Applying Mathematics: Immersion, Inference, Interpretation. [REVIEW]Anthony F. Peressini - 2020 - Philosophia Mathematica 28 (1):116-127.
    Otávio Bueno* * and Steven French.** ** Applying Mathematics: Immersion, Inference, Interpretation. Oxford University Press, 2018. ISBN: 978-0-19-881504-4 978-0-19-185286-2. doi:10.1093/oso/9780198815044. 001.0001. Pp. xvii + 257.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Inference to the best explanation as supporting the expansion of mathematicians’ ontological commitments.Marc Lange - 2022 - Synthese 200 (2):1-26.
    This paper argues that in mathematical practice, conjectures are sometimes confirmed by “Inference to the Best Explanation” as applied to some mathematical evidence. IBE operates in mathematics in the same way as IBE in science. When applied to empirical evidence, IBE sometimes helps to justify the expansion of scientists’ ontological commitments. Analogously, when applied to mathematical evidence, IBE sometimes helps to justify mathematicians' in expanding the range of their ontological commitments. IBE supplements other forms of non-deductive reasoning in mathematics, avoiding (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Platonic Relations and Mathematical Explanations.Robert Knowles - 2021 - Philosophical Quarterly 71 (3):623-644.
    Some scientific explanations appear to turn on pure mathematical claims. The enhanced indispensability argument appeals to these ‘mathematical explanations’ in support of mathematical platonism. I argue that the success of this argument rests on the claim that mathematical explanations locate pure mathematical facts on which their physical explananda depend, and that any account of mathematical explanation that supports this claim fails to provide an adequate understanding of mathematical explanation.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Unificatory Understanding and Explanatory Proofs.Joachim Frans - 2020 - Foundations of Science 26 (4):1105-1127.
    One of the central aims of the philosophical analysis of mathematical explanation is to determine how one can distinguish explanatory proofs from non-explanatory proofs. In this paper, I take a closer look at the current status of the debate, and what the challenges for the philosophical analysis of explanatory proofs are. In order to provide an answer to these challenges, I suggest we start from analysing the concept understanding. More precisely, I will defend four claims: understanding is a condition for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Conceptual and Computational Mathematics†.Nicolas Fillion - 2019 - Philosophia Mathematica 27 (2):199-218.
    ABSTRACT This paper examines consequences of the computer revolution in mathematics. By comparing its repercussions with those of conceptual developments that unfolded in the nineteenth century, I argue that the key epistemological lesson to draw from the two transformative periods is that effective and successful mathematical practices in science result from integrating the computational and conceptual styles of mathematics, and not that one of the two styles of mathematical reasoning is superior. Finally, I show that the methodology deployed by applied (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematical Explanation: A Contextual Approach.Sven Delarivière, Joachim Frans & Bart Van Kerkhove - 2017 - Journal of Indian Council of Philosophical Research 34 (2):309-329.
    PurposeIn this article, we aim to present and defend a contextual approach to mathematical explanation.MethodTo do this, we introduce an epistemic reading of mathematical explanation.ResultsThe epistemic reading not only clarifies the link between mathematical explanation and mathematical understanding, but also allows us to explicate some contextual factors governing explanation. We then show how several accounts of mathematical explanation can be read in this approach.ConclusionThe contextual approach defended here clears up the notion of explanation and pushes us towards a pluralist vision (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Viewing-as explanations and ontic dependence.William D’Alessandro - 2020 - Philosophical Studies 177 (3):769-792.
    According to a widespread view in metaphysics and philosophy of science, all explanations involve relations of ontic dependence between the items appearing in the explanandum and the items appearing in the explanans. I argue that a family of mathematical cases, which I call “viewing-as explanations”, are incompatible with the Dependence Thesis. These cases, I claim, feature genuine explanations that aren’t supported by ontic dependence relations. Hence the thesis isn’t true in general. The first part of the paper defends this claim (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)Teaching and Learning Guide for: Explanation in Mathematics: Proofs and Practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11):e12629.
    This is a teaching and learning guide to accompany "Explanation in Mathematics: Proofs and Practice".
    Download  
     
    Export citation  
     
    Bookmark  
  • Proving Quadratic Reciprocity: Explanation, Disagreement, Transparency and Depth.William D’Alessandro - 2020 - Synthese (9):1-44.
    Gauss’s quadratic reciprocity theorem is among the most important results in the history of number theory. It’s also among the most mysterious: since its discovery in the late 18th century, mathematicians have regarded reciprocity as a deeply surprising fact in need of explanation. Intriguingly, though, there’s little agreement on how the theorem is best explained. Two quite different kinds of proof are most often praised as explanatory: an elementary argument that gives the theorem an intuitive geometric interpretation, due to Gauss (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mathematical Explanation beyond Explanatory Proof.William D’Alessandro - 2017 - British Journal for the Philosophy of Science 71 (2):581-603.
    Much recent work on mathematical explanation has presupposed that the phenomenon involves explanatory proofs in an essential way. I argue that this view, ‘proof chauvinism’, is false. I then look in some detail at the explanation of the solvability of polynomial equations provided by Galois theory, which has often been thought to revolve around an explanatory proof. The article concludes with some general worries about the effects of chauvinism on the theory of mathematical explanation. 1Introduction 2Why I Am Not a (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • (1 other version)Explanation in mathematics: Proofs and practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11):e12629.
    Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if so, how do (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In defense (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A Noetic Account of Explanation in Mathematics.William D’Alessandro & Ellen Lehet - forthcoming - Philosophical Quarterly.
    We defend a noetic account of intramathematical explanation. On this view, a piece of mathematics is explanatory just in case it produces understanding of an appropriate type. We motivate the view by presenting some appealing features of noeticism. We then discuss and criticize the most prominent extant version of noeticism, due to Inglis and Mejía Ramos, which identifies explanatory understanding with the possession of well-organized cognitive schemas. Finally, we present a novel noetic account. On our view, explanatory understanding arises from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophy of mathematical practice: A primer for mathematics educators.Yacin Hamami & Rebecca Morris - 2020 - ZDM Mathematics Education 52:1113–1126.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations