Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Model Theory.Michael Makkai, C. C. Chang & H. J. Keisler - 1991 - Journal of Symbolic Logic 56 (3):1096.
    Download  
     
    Export citation  
     
    Bookmark   410 citations  
  • A class of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma {3}^{0}}$$\end{document} modular lattices embeddable as principal filters in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}^{\ast }(V{\infty })}$$\end{document}. [REVIEW]Rumen Dimitrov - 2008 - Archive for Mathematical Logic 47 (2):111-132.
    Let I0 be a a computable basis of the fully effective vector space V∞ over the computable field F. Let I be a quasimaximal subset of I0 that is the intersection of n maximal subsets of the same 1-degree up to *. We prove that the principal filter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}^{\ast}(V,\uparrow )}$$\end{document} of V = cl(I) is isomorphic to the lattice \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}(n, \overline{F})}$$\end{document} of subspaces (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Linear Orderings.Joseph G. Rosenstein - 1983 - Journal of Symbolic Logic 48 (4):1207-1209.
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Constructive ultraproducts and isomorphisms of recursively saturated ultrapowers.G. C. Nelson - 1992 - Notre Dame Journal of Formal Logic 33 (3):433-441.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Recursive linear orders with recursive successivities.Michael Moses - 1984 - Annals of Pure and Applied Logic 27 (3):253-264.
    A successivity in a linear order is a pair of elements with no other elements between them. A recursive linear order with recursive successivities U is recursively categorical if every recursive linear order with recursive successivities isomorphic to U is in fact recursively isomorphic to U . We characterize those recursive linear orders with recursive successivities that are recursively categorical as precisely those with order type k 1 + g 1 + k 2 + g 2 +…+ g n -1 (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations