Switch to: Citations

Add references

You must login to add references.
  1. The Higher Infinite.Akihiro Kanamori - 2000 - Studia Logica 65 (3):443-446.
    Download  
     
    Export citation  
     
    Bookmark   212 citations  
  • Squares, scales and stationary reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (01):35-98.
    Since the work of Gödel and Cohen, which showed that Hilbert's First Problem was independent of the usual assumptions of mathematics, there have been a myriad of independence results in many areas of mathematics. These results have led to the systematic study of several combinatorial principles that have proven effective at settling many of the important independent statements. Among the most prominent of these are the principles diamond and square discovered by Jensen. Simultaneously, attempts have been made to find suitable (...)
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • The fine structure of the constructible hierarchy.R. Björn Jensen - 1972 - Annals of Mathematical Logic 4 (3):229.
    Download  
     
    Export citation  
     
    Bookmark   270 citations  
  • $K$ without the measurable.Ronald Jensen & John Steel - 2013 - Journal of Symbolic Logic 78 (3):708-734.
    We show in ZFC that if there is no proper class inner model with a Woodin cardinal, then there is an absolutely definablecore modelthat is close toVin various ways.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Aronszajn trees, square principles, and stationary reflection.Chris Lambie-Hanson - 2017 - Mathematical Logic Quarterly 63 (3-4):265-281.
    We investigate questions involving Aronszajn trees, square principles, and stationary reflection. We first consider two strengthenings of introduced by Brodsky and Rinot for the purpose of constructing κ‐Souslin trees. Answering a question of Rinot, we prove that the weaker of these strengthenings is compatible with stationary reflection at κ but the stronger is not. We then prove that, if μ is a singular cardinal, implies the existence of a special ‐tree with a cf(μ)‐ascent path, thus answering a question of Lücke.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Powers of regular cardinals.William B. Easton - 1970 - Annals of Mathematical Logic 1 (2):139.
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • The Club Guessing Ideal: Commentary on a Theorem of Gitik and Shelah.Matthew Foreman & Peter Komjath - 2005 - Journal of Mathematical Logic 5 (1):99-147.
    It is shown in this paper that it is consistent (relative to almost huge cardinals) for various club guessing ideals to be saturated.
    Download  
     
    Export citation  
     
    Bookmark   8 citations