Switch to: Citations

Add references

You must login to add references.
  1. Parts of Classes.David K. Lewis - 1991 - Mind 100 (3):394-397.
    Download  
     
    Export citation  
     
    Bookmark   659 citations  
  • (4 other versions)The Logic of Scientific Discovery.Karl R. Popper - 1959 - Les Etudes Philosophiques 14 (3):383-383.
    Download  
     
    Export citation  
     
    Bookmark   599 citations  
  • Reasoning About Uncertainty.Joseph Y. Halpern - 2003 - MIT Press.
    Using formal systems to represent and reason about uncertainty.
    Download  
     
    Export citation  
     
    Bookmark   170 citations  
  • What conditional probability could not be.Alan Hájek - 2003 - Synthese 137 (3):273--323.
    Kolmogorov''s axiomatization of probability includes the familiarratio formula for conditional probability: 0).$$ " align="middle" border="0">.
    Download  
     
    Export citation  
     
    Bookmark   329 citations  
  • Regularity and Hyperreal Credences.Kenny Easwaran - 2014 - Philosophical Review 123 (1):1-41.
    Many philosophers have become worried about the use of standard real numbers for the probability function that represents an agent's credences. They point out that real numbers can't capture the distinction between certain extremely unlikely events and genuinely impossible ones—they are both represented by credence 0, which violates a principle known as “regularity.” Following Skyrms 1980 and Lewis 1980, they recommend that we should instead use a much richer set of numbers, called the “hyperreals.” This essay argues that this popular (...)
    Download  
     
    Export citation  
     
    Bookmark   84 citations  
  • Conditional Probabilities.Kenny Easwaran - 2019 - In Richard Pettigrew & Jonathan Weisberg (eds.), The Open Handbook of Formal Epistemology. PhilPapers Foundation. pp. 131-198.
    Conditional probability is one of the central concepts in probability theory. Some notion of conditional probability is part of every interpretation of probability. The basic mathematical fact about conditional probability is that p(A |B) = p(A ∧B)/p(B) where this is defined. However, while it has been typical to take this as a definition or analysis of conditional probability, some (perhaps most prominently Hájek, 2003) have argued that conditional probability should instead be taken as the primitive notion, so that this formula (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (1 other version)Infinitesimal Probabilities.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2016 - British Journal for the Philosophy of Science 69 (2):509-552.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general. _1_ Introduction _2_ The Limits of Classical Probability Theory _2.1_ Classical probability functions _2.2_ Limitations _2.3_ Infinitesimals to the rescue? _3_ NAP Theory _3.1_ First four axioms of NAP _3.2_ Continuity and conditional probability _3.3_ The final axiom of NAP (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Non-Archimedean Probability.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2013 - Milan Journal of Mathematics 81 (1):121-151.
    We propose an alternative approach to probability theory closely related to the framework of numerosity theory: non-Archimedean probability (NAP). In our approach, unlike in classical probability theory, all subsets of an infinite sample space are measurable and only the empty set gets assigned probability zero (in other words: the probability functions are regular). We use a non-Archimedean field as the range of the probability function. As a result, the property of countable additivity in Kolmogorov’s axiomatization of probability is replaced by (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • (1 other version)Infinitesimal Probabilities.Sylvia Wenmackers - 2019 - In Richard Pettigrew & Jonathan Weisberg (eds.), The Open Handbook of Formal Epistemology. PhilPapers Foundation. pp. 199-265.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Declarations of independence.Branden Fitelson & Alan Hájek - 2017 - Synthese 194 (10):3979-3995.
    According to orthodox (Kolmogorovian) probability theory, conditional probabilities are by definition certain ratios of unconditional probabilities. As a result, orthodox conditional probabilities are undefined whenever their antecedents have zero unconditional probability. This has important ramifications for the notion of probabilistic independence. Traditionally, independence is defined in terms of unconditional probabilities (the factorization of the relevant joint unconditional probabilities). Various “equivalent” formulations of independence can be given using conditional probabilities. But these “equivalences” break down if conditional probabilities are permitted to have (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Learning the Impossible.Vann McGee - 1994 - In Ellery Eells & Brian Skyrms (eds.), Probability and Conditionals: Belief Revision and Rational Decision. New York: Cambridge University Press. pp. 179-199.
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Representational of conditional probabilities.Bas C. Van Fraassen - 1976 - Journal of Philosophical Logic 5 (3):417-430.
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • De finetti, countable additivity, consistency and coherence.Colin Howson - 2008 - British Journal for the Philosophy of Science 59 (1):1-23.
    Many people believe that there is a Dutch Book argument establishing that the principle of countable additivity is a condition of coherence. De Finetti himself did not, but for reasons that are at first sight perplexing. I show that he rejected countable additivity, and hence the Dutch Book argument for it, because countable additivity conflicted with intuitive principles about the scope of authentic consistency constraints. These he often claimed were logical in nature, but he never attempted to relate this idea (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • The representation of Popper measures.Wolfgang Spohn - 1986 - Topoi 5 (1):69-74.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Why Countable Additivity?Kenny Easwaran - 2013 - Thought: A Journal of Philosophy 2 (1):53-61.
    It is sometimes alleged that arguments that probability functions should be countably additive show too much, and that they motivate uncountable additivity as well. I show this is false by giving two naturally motivated arguments for countable additivity that do not motivate uncountable additivity.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Countable additivity and the de finetti lottery.Paul Bartha - 2004 - British Journal for the Philosophy of Science 55 (2):301-321.
    De Finetti would claim that we can make sense of a draw in which each positive integer has equal probability of winning. This requires a uniform probability distribution over the natural numbers, violating countable additivity. Countable additivity thus appears not to be a fundamental constraint on subjective probability. It does, however, seem mandated by Dutch Book arguments similar to those that support the other axioms of the probability calculus as compulsory for subjective interpretations. These two lines of reasoning can be (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations