Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)On the Incompatibility of Dynamical Biological Mechanisms and Causal Graphs.Marcel Weber - 2016 - Philosophy of Science 83 (5):959-971.
    I examine to what extent accounts of mechanisms based on formal interventionist theories of causality can adequately represent biological mechanisms with complex dynamics. Using a differential equation model for a circadian clock mechanism as an example, I first show that there exists an iterative solution that can be interpreted as a structural causal model. Thus, in principle, it is possible to integrate causal difference-making information with dynamical information. However, the differential equation model itself lacks the right modularity properties for a (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Explanation: a mechanist alternative.William Bechtel & Adele Abrahamsen - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):421-441.
    Explanations in the life sciences frequently involve presenting a model of the mechanism taken to be responsible for a given phenomenon. Such explanations depart in numerous ways from nomological explanations commonly presented in philosophy of science. This paper focuses on three sorts of differences. First, scientists who develop mechanistic explanations are not limited to linguistic representations and logical inference; they frequently employ diagrams to characterize mechanisms and simulations to reason about them. Thus, the epistemic resources for presenting mechanistic explanations are (...)
    Download  
     
    Export citation  
     
    Bookmark   563 citations  
  • Learning Causal Structure from Undersampled Time Series.David Danks & Sergey Plis - unknown
    Even if one can experiment on relevant factors, learning the causal structure of a dynamical system can be quite difficult if the relevant measurement processes occur at a much slower sampling rate than the “true” underlying dynamics. This problem is exacerbated if the degree of mismatch is unknown. This paper gives a formal characterization of this learning problem, and then provides two sets of results. First, we prove a set of theorems characterizing how causal structures change under undersampling. Second, we (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • What Is Going on Inside the Arrows? Discovering the Hidden Springs in Causal Models.Alexander Murray-Watters & Clark Glymour - 2015 - Philosophy of Science 82 (4):556-586.
    Using Gebharter’s representation, we consider aspects of the problem of discovering the structure of unmeasured submechanisms when the variables in those submechanisms have not been measured. Exploiting an early insight of Sober’s, we provide a correct algorithm for identifying latent, endogenous structure—submechanisms—for a restricted class of structures. The algorithm can be merged with other methods for discovering causal relations among unmeasured variables, and feedback relations between measured variables and unobserved causes can sometimes be learned.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the Limits of Causal Modeling: Spatially-Structurally Complex Biological Phenomena.Marie I. Kaiser - 2016 - Philosophy of Science 83 (5):921-933.
    This paper examines the adequacy of causal graph theory as a tool for modeling biological phenomena and formalizing biological explanations. I point out that the causal graph approach reaches it limits when it comes to modeling biological phenomena that involve complex spatial and structural relations. Using a case study from molecular biology, DNA-binding and -recognition of proteins, I argue that causal graph models fail to adequately represent and explain causal phenomena in this field. The inadequacy of these models is due (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Causality as a theoretical concept: explanatory warrant and empirical content of the theory of causal nets.Gerhard Schurz & Alexander Gebharter - 2016 - Synthese 193 (4):1073-1103.
    We start this paper by arguing that causality should, in analogy with force in Newtonian physics, be understood as a theoretical concept that is not explicated by a single definition, but by the axioms of a theory. Such an understanding of causality implicitly underlies the well-known theory of causal nets and has been explicitly promoted by Glymour. In this paper we investigate the explanatory warrant and empirical content of TCN. We sketch how the assumption of directed cause–effect relations can be (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Indeterminism and the causal Markov condition.Daniel Steel - 2005 - British Journal for the Philosophy of Science 56 (1):3-26.
    The causal Markov condition (CMC) plays an important role in much recent work on the problem of causal inference from statistical data. It is commonly thought that the CMC is a more problematic assumption for genuinely indeterministic systems than for deterministic ones. In this essay, I critically examine this proposition. I show how the usual motivation for the CMC—that it is true of any acyclic, deterministic causal system in which the exogenous variables are independent—can be extended to the indeterministic case. (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Thinking about mechanisms.Peter Machamer, Lindley Darden & Carl F. Craver - 2000 - Philosophy of Science 67 (1):1-25.
    The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change.
    Download  
     
    Export citation  
     
    Bookmark   1355 citations  
  • Mechanisms and the nature of causation.Stuart S. Glennan - 1996 - Erkenntnis 44 (1):49--71.
    In this paper I offer an analysis of causation based upon a theory of mechanisms-complex systems whose internal parts interact to produce a system's external behavior. I argue that all but the fundamental laws of physics can be explained by reference to mechanisms. Mechanisms provide an epistemologically unproblematic way to explain the necessity which is often taken to distinguish laws from other generalizations. This account of necessity leads to a theory of causation according to which events are causally related when (...)
    Download  
     
    Export citation  
     
    Bookmark   441 citations  
  • A formal framework for representing mechanisms?Alexander Gebharter - 2014 - Philosophy of Science 81 (1):138-153.
    In this article I tackle the question of how the hierarchical order of mechanisms can be represented within a causal graph framework. I illustrate an answer to this question proposed by Casini, Illari, Russo, and Williamson and provide an example that their formalism does not support two important features of nested mechanisms: (i) a mechanism’s submechanisms are typically causally interacting with other parts of said mechanism, and (ii) intervening in some of a mechanism’s parts should have some influence on the (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Modelling mechanisms with causal cycles.Brendan Clarke, Bert Leuridan & Jon Williamson - 2014 - Synthese 191 (8):1-31.
    Mechanistic philosophy of science views a large part of scientific activity as engaged in modelling mechanisms. While science textbooks tend to offer qualitative models of mechanisms, there is increasing demand for models from which one can draw quantitative predictions and explanations. Casini et al. (Theoria 26(1):5–33, 2011) put forward the Recursive Bayesian Networks (RBN) formalism as well suited to this end. The RBN formalism is an extension of the standard Bayesian net formalism, an extension that allows for modelling the hierarchical (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • (1 other version)Models for Prediction, Explanation and Control: Recursive Bayesian Networks.Lorenzo Casini, Phyllis Illari, Frederica Russo & Jon Williamson - 2011 - Theoria 26 (1):5-33.
    The Recursive Bayesian Net formalism was originally developed for modelling nested causal relationships. In this paper we argue that the formalism can also be applied to modelling the hierarchical structure of mechanisms. The resulting network contains quantitative information about probabilities, as well as qualitative information about mechanistic structure and causal relations. Since information about probabilities, mechanisms and causal relations is vital for prediction, explanation and control respectively, an RBN can be applied to all these tasks. We show in particular how (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • How to Model Mechanistic Hierarchies.Lorenzo Casini - 2016 - Philosophy of Science 83 (5):946-958.
    Mechanisms are usually viewed as inherently hierarchical, with lower levels of a mechanism influencing, and decomposing, its higher-level behaviour. In order to adequately draw quantitative predictions from a model of a mechanism, the model needs to capture this hierarchical aspect. The recursive Bayesian network formalism was put forward as a means to model mechanistic hierarchies by decomposing variables. The proposal was recently criticized by Gebharter and Gebharter and Kaiser, who instead propose to decompose arrows. In this paper, I defend the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Another problem with RBN models of mechanisms.Alexander Gebharter - 2016 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 31 (2):177-188.
    Casini, Illari, Russo, and Williamson (2011) suggest to model mechanisms by means of recursive Bayesian networks (RBNs) and Clarke, Leuridan, and Williamson (2014) extend their modelling approach to mechanisms featuring causal feedback. One of the main selling points of the RBN approach should be that it provides answers to questions concerning manipulation and control. In this paper I demonstrate that the method to compute the effects of interventions the authors mentioned endorse leads to absurd results under the additional assumption of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Reducing psychology while maintaining its autonomy via mechanistic explanations.William Bechtel - 2007 - In Maurice Kenneth Davy Schouten & Huibert Looren de Jong (eds.), The matter of the mind: philosophical essays on psychology, neuroscience, and reduction. Malden, MA: Blackwell.
    Arguments for the autonomy of psychology or other higher-level sciences have often taken the form of denying the possibility of reduction. The form of reduction most proponents and critics of the autonomy of psychology have in mind is theory reduction. Mechanistic explanations provide a different perspective. Mechanistic explanations are reductionist insofar as they appeal to lower-level entities—the component parts of a mechanism and their operations— to explain a phenomenon. However, unlike theory reductions, mechanistic explanations also recognize the fundamental role of (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Causality: Models, Reasoning and Inference.Judea Pearl - 2000 - Tijdschrift Voor Filosofie 64 (1):201-202.
    Download  
     
    Export citation  
     
    Bookmark   870 citations  
  • Causal Reasoning with Ancestral Graphical Models.Jiji Zhang - 2008 - Journal of Machine Learning Research 9:1437-1474.
    Causal reasoning is primarily concerned with what would happen to a system under external interventions. In particular, we are often interested in predicting the probability distribution of some random variables that would result if some other variables were forced to take certain values. One prominent approach to tackling this problem is based on causal Bayesian networks, using directed acyclic graphs as causal diagrams to relate post-intervention probabilities to pre-intervention probabilities that are estimable from observational data. However, such causal diagrams are (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations