Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Algebraic aspects of deduction theorems.Janusz Czelakowski - 1985 - Studia Logica 44 (4):369 - 387.
    The first known statements of the deduction theorems for the first-order predicate calculus and the classical sentential logic are due to Herbrand [8] and Tarski [14], respectively. The present paper contains an analysis of closure spaces associated with those sentential logics which admit various deduction theorems. For purely algebraic reasons it is convenient to view deduction theorems in a more general form: given a sentential logic C (identified with a structural consequence operation) in a sentential language I, a quite arbitrary (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Protoalgebraic logics.W. J. Blok & Don Pigozzi - 1986 - Studia Logica 45 (4):337 - 369.
    There exist important deductive systems, such as the non-normal modal logics, that are not proper subjects of classical algebraic logic in the sense that their metatheory cannot be reduced to the equational metatheory of any particular class of algebras. Nevertheless, most of these systems are amenable to the methods of universal algebra when applied to the matrix models of the system. In the present paper we consider a wide class of deductive systems of this kind called protoalgebraic logics. These include (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • A Strong Completeness Theorem for the Gentzen systems associated with finite algebras.Àngel J. Gil, Jordi Rebagliato & Ventura Verdú - 1999 - Journal of Applied Non-Classical Logics 9 (1):9-36.
    ABSTRACT In this paper we study consequence relations on the set of many sided sequents over a propositional language. We deal with the consequence relations axiomatized by the sequent calculi defined in [2] and associated with arbitrary finite algebras. These consequence relations are examples of what we call Gentzen systems. We define a semantics for these systems and prove a Strong Completeness Theorem, which is an extension of the Completeness Theorem for provable sequents stated in [2]. For the special case (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the Logic of Information Flow.Jon Barwise, Dov Gabby & Chrysafis Hartonas - 1995 - Logic Journal of the IGPL 3 (1):7-50.
    This paper is an investigation into the logic of information flow. The basic perspective is that logic flows in virtue of constraints and that constraints classify channels connecting particulars In this paper we explore some logics intended to model reasoning in the case of idealized information flow, that is, where the constraints involved are exceptionless. We look at this as a step toward the far more challenging task of understanding the logic of imperfect information flow, that is where the constraints (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Labeled calculi and finite-valued logics.Matthias Baaz, Christian G. Fermüller, Gernot Salzer & Richard Zach - 1998 - Studia Logica 61 (1):7-33.
    A general class of labeled sequent calculi is investigated, and necessary and sufficient conditions are given for when such a calculus is sound and complete for a finite -valued logic if the labels are interpreted as sets of truth values. Furthermore, it is shown that any finite -valued logic can be given an axiomatization by such a labeled calculus using arbitrary "systems of signs," i.e., of sets of truth values, as labels. The number of labels needed is logarithmic in the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Proof Theory of Finite-valued Logics.Richard Zach - 1993 - Dissertation, Technische Universität Wien
    The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory of finite-valued first order (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (1 other version)Algebraic aspects of deduction theorems.Janusz Czelakowski - 1983 - Bulletin of the Section of Logic 12 (3):111-114.
    By a sentential logic we understand a pair, where S is a sentential language, i.e. an absolutely free algebra freely generated by an infinite set p, q, r,... of sentential variables and endowed with countably many finitary connectives §1, §2,... and C is a consequence operation on S, the underlying set of S, satisfying the condition of structurality: eC ⊆ C, for every endomorphism e of S and for every X ⊆ S. If no confusion is likely we shall identify (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Gentzen-type systems, resolution and tableaux.Arnon Avron - 1993 - Journal of Automated Reasoning 10:265-281.
    In advanced books and courses on logic (e.g. Sm], BM]) Gentzen-type systems or their dual, tableaux, are described as techniques for showing validity of formulae which are more practical than the usual Hilbert-type formalisms. People who have learnt these methods often wonder why the Automated Reasoning community seems to ignore them and prefers instead the resolution method. Some of the classical books on AD (such as CL], Lo]) do not mention these methods at all. Others (such as Ro]) do, but (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • .Jay Zeman - unknown
    Over a decade ago, John Sowa did the AI community the great service of introducing it to the Existential Graphs of Charles Sanders Peirce. EG is a formalism which lends itself well to the kinds of thing that Conceptual Graphs are aimed at. But it is far more; it is a central element in the mathematical, logical, and philosophical thought of Peirce; this thought is fruitful in ways that are seldom evident when we first encounter it. In one of his (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations