Switch to: Citations

Add references

You must login to add references.
  1. How large is the first strongly compact cardinal? or a study on identity crises.Menachem Magidor - 1976 - Annals of Mathematical Logic 10 (1):33-57.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Boolean extensions and measurable cardinals.K. Kunen - 1971 - Annals of Mathematical Logic 2 (4):359.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • $K$ without the measurable.Ronald Jensen & John Steel - 2013 - Journal of Symbolic Logic 78 (3):708-734.
    We show in ZFC that if there is no proper class inner model with a Woodin cardinal, then there is an absolutely definablecore modelthat is close toVin various ways.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The number of normal measures.Sy-David Friedman & Menachem Magidor - 2009 - Journal of Symbolic Logic 74 (3):1069-1080.
    There have been numerous results showing that a measurable cardinal κ can carry exactly α normal measures in a model of GCH, where a is a cardinal at most κ⁺⁺. Starting with just one measurable cardinal, we have [9] (for α = 1), [10] (for α = κ⁺⁺, the maximum possible) and [1] (for α = κ⁺, after collapsing κ⁺⁺) . In addition, under stronger large cardinal hypotheses, one can handle the remaining cases: [12] (starting with a measurable cardinal of (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Homogeneous changes in cofinalities with applications to HOD.Omer Ben-Neria & Spencer Unger - 2017 - Journal of Mathematical Logic 17 (2):1750007.
    We present a new technique for changing the cofinality of large cardinals using homogeneous forcing. As an application we show that many singular cardinals in [Formula: see text] can be measurable in HOD. We also answer a related question of Cummings, Friedman and Golshani by producing a model in which every regular uncountable cardinal [Formula: see text] in [Formula: see text] is [Formula: see text]-supercompact in HOD.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Forcing Magidor iteration over a core model below $${0^{\P}}$$ 0 ¶.Omer Ben-Neria - 2014 - Archive for Mathematical Logic 53 (3-4):367-384.
    We study the Magidor iteration of Prikry forcings, and the resulting normal measures on κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document}, the first measurable cardinal in a generic extension. We show that when applying the iteration to a core model below 0¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0^{\P}}$$\end{document}, then there exists a natural correspondence between the normal measures on κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document} in the ground model, and those (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Normal measures on a tall cardinal.Arthur W. Apter & James Cummings - 2019 - Journal of Symbolic Logic 84 (1):178-204.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Identity crises and strong compactness.Arthur Apter & James Cummings - 2000 - Journal of Symbolic Logic 65 (4):1895-1910.
    Combining techniques of the first author and Shelah with ideas of Magidor, we show how to get a model in which, for fixed but arbitrary finite n, the first n strongly compact cardinals κ 1 ,..., κ n are so that κ i for i = 1,..., n is both the i th measurable cardinal and κ + i supercompact. This generalizes an unpublished theorem of Magidor and answers a question of Apter and Shelah.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Iterates of the Core Model.Ralf Schindler - 2006 - Journal of Symbolic Logic 71 (1):241 - 251.
    Let N be a transitive model of ZFC such that ωN ⊂ N and P(R) ⊂ N. Assume that both V and N satisfy "the core model K exists." Then KN is an iterate of K. i.e., there exists an iteration tree J on K such that J has successor length and $\mathit{M}_{\infty}^{\mathit{J}}=K^{N}$. Moreover, if there exists an elementary embedding π: V → N then the iteration map associated to the main branch of J equals π ↾ K. (This answers (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The Higher Infinite.Akihiro Kanamori - 2000 - Studia Logica 65 (3):443-446.
    Download  
     
    Export citation  
     
    Bookmark   211 citations