Switch to: Citations

Add references

You must login to add references.
  1. A Logical Calculus of the Ideas Immanent in Nervous Activity.Warren S. Mcculloch & Walter Pitts - 1943 - Journal of Symbolic Logic 9 (2):49-50.
    Download  
     
    Export citation  
     
    Bookmark   190 citations  
  • The Structure of Science.Ernest Nagel - 1961 - Les Etudes Philosophiques 17 (2):275-275.
    Download  
     
    Export citation  
     
    Bookmark   877 citations  
  • How to Do Science with Models: A Philosophical Primer.Axel Gelfert - 2016 - Cham: Springer.
    Taking scientific practice as its starting point, this book charts the complex territory of models used in science. It examines what scientific models are and what their function is. Reliance on models is pervasive in science, and scientists often need to construct models in order to explain or predict anything of interest at all. The diversity of kinds of models one finds in science – ranging from toy models and scale models to theoretical and mathematical models – has attracted attention (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Mind as Machine: A History of Cognitive Science.Margaret Ann Boden - 2006 - Oxford University Press.
    Cognitive science is the project of understanding the mind by modelling its workings. Its development is one of the most remarkable and fascinating intellectual achievements of the modern era. Mind as Machine is a masterful history of cognitive science, told by one of its most eminent practitioners.
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • On Computable Numbers, with an Application to the Entscheidungsproblem.Alan Turing - 1936 - Proceedings of the London Mathematical Society 42 (1):230-265.
    Download  
     
    Export citation  
     
    Bookmark   717 citations  
  • (1 other version)Models and metaphors.Max Black - 1962 - Ithaca, N.Y.,: Cornell University Press.
    Author Max Black argues that language should conform to the discovered regularities of experience it is radically mistaken to assume that the conception of language is a mirror of reality.
    Download  
     
    Export citation  
     
    Bookmark   278 citations  
  • Models and Analogies in Science.Mary B. Hesse - 1963 - [Notre Dame, Ind.]: University of Notre Dame Press.
    Download  
     
    Export citation  
     
    Bookmark   375 citations  
  • The autonomy of models and explanation: anomalous molecular rearrangements in early twentieth-century physical organic chemistry.Grant Fisher - 2006 - Studies in History and Philosophy of Science Part A 37 (4):562-584.
    During the 1930s and 1940s, American physical organic chemists employed electronic theories of reaction mechanisms to construct models offering explanations of organic reactions. But two molecular rearrangements presented enormous challenges to model construction. The Claisen and Cope rearrangements were predominantly inaccessible to experimental investigation and they confounded explanation in theoretical terms. Drawing on the idea that models can be autonomous agents in the production of scientific knowledge, I argue that one group of models in particular were functionally autonomous from the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Cognitive science.Paul Thagard - 2008 - Stanford Encyclopedia of Philosophy.
    Cognitive science is the interdisciplinary investigation of mind and intelligence, embracing psychology, neuroscience, anthropology, artificial intelligence, and philosophy. There are many important philosophical questions related to this investigation, but this short chapter will focus on the following three. What is the nature of the explanations and theories developed in cognitive science? What are the relations among the five disciplines that comprise cognitive science? What are the implications of cognitive science research for general issues in the philosophy of science? I will (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • The Nature and Context of Exploratory Experimentation: An Introduction to Three Case Studies of Exploratory Research.C. Kenneth Waters - 2007 - History and Philosophy of the Life Sciences 29 (3):275 - 284.
    My aim in this article is to introduce readers to the topic of exploratory experimentation and briefly explain how the three articles that follow, by Richard Burian, Kevin Elliott, and Maureen O'Malley, advance our understanding of the nature and significance of exploratory research. I suggest that the distinction between exploratory and theory-driven experimentation is multidimensional and that some of the dimensions are continuums. I point out that exploratory experiments are typically theory-informed even if they are not theory-driven. I also distinguish (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • An analysis of the Turing test.James H. Moor - 1976 - Philosophical Studies 30 (4):249 - 257.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Entering new fields: Exploratory uses of experimentation.Friedrich Steinle - 1997 - Philosophy of Science 64 (4):74.
    Starting with some illustrative examples, I develop a systematic account of a specific type of experimentation--an experimentation which is not, as in the "standard view", driven by specific theories. It is typically practiced in periods in which no theory or--even more fundamentally--no conceptual framework is readily available. I call it exploratory experimentation and I explicate its systematic guidelines. From the historical examples I argue furthermore that exploratory experimentation may have an immense, but hitherto widely neglected, epistemic significance.
    Download  
     
    Export citation  
     
    Bookmark   133 citations  
  • Computation and cognition: Issues in the foundation of cognitive science.Zenon W. Pylyshyn - 1980 - Behavioral and Brain Sciences 3 (1):111-32.
    The computational view of mind rests on certain intuitions regarding the fundamental similarity between computation and cognition. We examine some of these intuitions and suggest that they derive from the fact that computers and human organisms are both physical systems whose behavior is correctly described as being governed by rules acting on symbolic representations. Some of the implications of this view are discussed. It is suggested that a fundamental hypothesis of this approach is that there is a natural domain of (...)
    Download  
     
    Export citation  
     
    Bookmark   664 citations  
  • Artificial intelligence—A personal view.David Marr - 1977 - Artificial Intelligence 9 (September):37-48.
    Download  
     
    Export citation  
     
    Bookmark   193 citations  
  • (1 other version)The symbol grounding problem.Stevan Harnad - 1990 - Physica D 42:335-346.
    There has been much discussion recently about the scope and limits of purely symbolic models of the mind and about the proper role of connectionism in cognitive modeling. This paper describes the symbol grounding problem : How can the semantic interpretation of a formal symbol system be made intrinsic to the system, rather than just parasitic on the meanings in our heads? How can the meanings of the meaningless symbol tokens, manipulated solely on the basis of their shapes, be grounded (...)
    Download  
     
    Export citation  
     
    Bookmark   345 citations  
  • (1 other version)Computer science as empirical inquiry: Symbols and search.Allen Newell & Herbert A. Simon - 1981 - Communications of the Association for Computing Machinery 19:113-26.
    Download  
     
    Export citation  
     
    Bookmark   173 citations  
  • Physical symbol systems.Allen Newell - 1980 - Cognitive Science 4 (2):135-83.
    On the occasion of a first conference on Cognitive Science, it seems appropriate to review the basis of common understanding between the various disciplines. In my estimate, the most fundamental contribution so far of artificial intelligence and computer science to the joint enterprise of cognitive science has been the notion of a physical symbol system, i.e., the concept of a broad class of systems capable of having and manipulating symbols, yet realizable in the physical universe. The notion of symbol so (...)
    Download  
     
    Export citation  
     
    Bookmark   487 citations  
  • The Turing test.B. Jack Copeland - 2000 - Minds and Machines 10 (4):519-539.
    Turing''s test has been much misunderstood. Recently unpublished material by Turing casts fresh light on his thinking and dispels a number of philosophical myths concerning the Turing test. Properly understood, the Turing test withstands objections that are popularly believed to be fatal.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • (1 other version)Alan Turing: the Enigma.Andrew Hodges - 1985 - Journal of Symbolic Logic 50 (4):1065-1067.
    Download  
     
    Export citation  
     
    Bookmark   115 citations  
  • Artificial Intelligence: A Modern Approach.Stuart Jonathan Russell & Peter Norvig (eds.) - 1995 - Prentice-Hall.
    Artificial Intelligence: A Modern Approach, 3e offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. Number one in its field, this textbook is ideal for one or two-semester, undergraduate or graduate-level courses in Artificial Intelligence. Dr. Peter Norvig, contributing Artificial Intelligence author and Professor Sebastian Thrun, a Pearson author are offering a free online course at Stanford University on artificial intelligence. According to an article in The New York Times, the course on artificial intelligence is (...)
    Download  
     
    Export citation  
     
    Bookmark   275 citations  
  • (1 other version)Models and metaphors.Max Black - 1962 - Ithaca, N.Y.,: Cornell University Press.
    Author Max Black argues that language should conform to the discovered regularities of experience it is radically mistaken to assume that the conception of language is a mirror of reality.
    Download  
     
    Export citation  
     
    Bookmark   265 citations  
  • Empiricism without Magic: Transformational Abstraction in Deep Convolutional Neural Networks.Cameron Buckner - 2018 - Synthese (12):1-34.
    In artificial intelligence, recent research has demonstrated the remarkable potential of Deep Convolutional Neural Networks (DCNNs), which seem to exceed state-of-the-art performance in new domains weekly, especially on the sorts of very difficult perceptual discrimination tasks that skeptics thought would remain beyond the reach of artificial intelligence. However, it has proven difficult to explain why DCNNs perform so well. In philosophy of mind, empiricists have long suggested that complex cognition is based on information derived from sensory experience, often appealing to (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • What Computers Can't Do.H. Dreyfus - 1976 - British Journal for the Philosophy of Science 27 (2):177-185.
    Download  
     
    Export citation  
     
    Bookmark   273 citations  
  • Models and Analogies in Science.Mary Hesse - 1965 - British Journal for the Philosophy of Science 16 (62):161-163.
    Download  
     
    Export citation  
     
    Bookmark   282 citations  
  • Representing and Intervening: Introductory Topics in the Philosophy of Natural Science.Jarrett Leplin - 1985 - Philosophy of Science 52 (2):314-315.
    Download  
     
    Export citation  
     
    Bookmark   265 citations  
  • The perceptron: A probabilistic model for information storage and organization in the brain.F. Rosenblatt - 1958 - Psychological Review 65 (6):386-408.
    If we are eventually to understand the capability of higher organisms for perceptual recognition, generalization, recall, and thinking, we must first have answers to three fundamental questions: 1. How is information about the physical world sensed, or detected, by the biological system? 2. In what form is information stored, or remembered? 3. How does information contained in storage, or in memory, influence recognition and behavior? The first of these questions is in the.
    Download  
     
    Export citation  
     
    Bookmark   173 citations  
  • Extending Ourselves: Computational Science, Empiricism, and Scientific Method.Paul Humphreys - 2004 - New York, US: Oxford University Press.
    Computational methods such as computer simulations, Monte Carlo methods, and agent-based modeling have become the dominant techniques in many areas of science. Extending Ourselves contains the first systematic philosophical account of these new methods, and how they require a different approach to scientific method. Paul Humphreys draws a parallel between the ways in which such computational methods have enhanced our abilities to mathematically model the world, and the more familiar ways in which scientific instruments have expanded our access to the (...)
    Download  
     
    Export citation  
     
    Bookmark   280 citations  
  • Whatever next? Predictive brains, situated agents, and the future of cognitive science.Andy Clark - 2013 - Behavioral and Brain Sciences 36 (3):181-204.
    Brains, it has recently been argued, are essentially prediction machines. They are bundles of cells that support perception and action by constantly attempting to match incoming sensory inputs with top-down expectations or predictions. This is achieved using a hierarchical generative model that aims to minimize prediction error within a bidirectional cascade of cortical processing. Such accounts offer a unifying model of perception and action, illuminate the functional role of attention, and may neatly capture the special contribution of cortical processing to (...)
    Download  
     
    Export citation  
     
    Bookmark   744 citations  
  • The World as a Process: Simulations in the Natural and Social Sciences.Stephan Hartmann - 1996 - In Rainer Hegselmann et al (ed.), Modelling and Simulation in the Social Sciences from the Philosophy of Science Point of View.
    Simulation techniques, especially those implemented on a computer, are frequently employed in natural as well as in social sciences with considerable success. There is mounting evidence that the "model-building era" (J. Niehans) that dominated the theoretical activities of the sciences for a long time is about to be succeeded or at least lastingly supplemented by the "simulation era". But what exactly are models? What is a simulation and what is the difference and the relation between a model and a simulation? (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • A comparison of the meaning and uses of models in mathematics and the empirical sciences.Patrick Suppes - 1960 - Synthese 12 (2-3):287--301.
    Download  
     
    Export citation  
     
    Bookmark   204 citations  
  • The Turing test: Ai's biggest blind Alley?Blay Whitby - 1996 - In Peter Millican & Andy Clark (eds.), Machines and Thought: The Legacy of Alan Turing. Oxford, England: Oxford University Press. pp. 519-539.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)Computer Science as Empirical Inquiry: Symbols and Search.Allen Newell & H. A. Simon - 1976 - Communications of the Acm 19:113-126.
    Download  
     
    Export citation  
     
    Bookmark   234 citations  
  • Models and Analogies in Science.Mary B. Hesse - 1966 - Philosophy and Rhetoric 3 (3):190-191.
    Download  
     
    Export citation  
     
    Bookmark   417 citations  
  • The Scientific Image.William Demopoulos & Bas C. van Fraassen - 1982 - Philosophical Review 91 (4):603.
    Download  
     
    Export citation  
     
    Bookmark   1794 citations  
  • Representing and Intervening: Introductory Topics in the Philosophy of Natural Science.Ian Hacking - 1983 - New York: Cambridge University Press.
    This 1983 book is a lively and clearly written introduction to the philosophy of natural science, organized around the central theme of scientific realism. It has two parts. 'Representing' deals with the different philosophical accounts of scientific objectivity and the reality of scientific entities. The views of Kuhn, Feyerabend, Lakatos, Putnam, van Fraassen, and others, are all considered. 'Intervening' presents the first sustained treatment of experimental science for many years and uses it to give a new direction to debates about (...)
    Download  
     
    Export citation  
     
    Bookmark   762 citations  
  • The principles of mechanics (Slovak translation of HR Hertz's with annotations and introduction).H. R. Hertz - 2002 - Filozofia 57 (6):444-453.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Science in the age of computer simulation.Eric Winsberg - 2010 - Chicago: University of Chicago Press.
    Introduction -- Sanctioning models : theories and their scope -- Methodology for a virtual world -- A tale of two methods -- When theories shake hands -- Models of climate : values and uncertainties -- Reliability without truth -- Conclusion.
    Download  
     
    Export citation  
     
    Bookmark   166 citations  
  • The Scientific Image by Bas C. van Fraassen. [REVIEW]Michael Friedman - 1982 - Journal of Philosophy 79 (5):274-283.
    Download  
     
    Export citation  
     
    Bookmark   919 citations  
  • Intention, Emotion, and Action: A Neural Theory Based on Semantic Pointers.Tobias Schröder, Terrence C. Stewart & Paul Thagard - 2014 - Cognitive Science 38 (5):851-880.
    We propose a unified theory of intentions as neural processes that integrate representations of states of affairs, actions, and emotional evaluation. We show how this theory provides answers to philosophical questions about the concept of intention, psychological questions about human behavior, computational questions about the relations between belief and action, and neuroscientific questions about how the brain produces actions. Our theory of intention ties together biologically plausible mechanisms for belief, planning, and motor control. The computational feasibility of these mechanisms is (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Philosophy and artificial intelligence.Martin Ringle - 1979 - In Philosophical Perspectives in Artificial Intelligence. Humanities Press.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Science in the context of technology.Alfred Nordmann - 2011 - In M. Carrier & A. Nordmann (eds.), Science in the Context of Application. Springer. pp. 467--482.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Science After the Practice Turn in the Philosophy, History, and Social Studies of Science.Lena Soler, Sjoerd Zwart, Michael Lynch & Vincent Israel-Jost (eds.) - 2014 - New York: Routledge.
    In the 1980s, philosophical, historical and social studies of science underwent a change which later evolved into a turn to practice. Analysts of science were asked to pay attention to scientific practices in meticulous detail and along multiple dimensions, including the material, social and psychological. Following this turn, the interest in scientific practices continued to increase and had an indelible influence in the various fields of science studies. No doubt, the practice turn changed our conceptions and approaches of science, but (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Sachindex.Johannes Lenhard - 2015 - In Mit Allem Rechnen - Zur Philosophie der Computersimulation. De Gruyter. pp. 210-212.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mit Allem Rechnen - Zur Philosophie der Computersimulation.Johannes Lenhard - 2015 - De Gruyter.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Representing and Intervening: Introductory Topics in the Philosophy of Natural Science.Davis Baird - 1988 - Noûs 22 (2):299-307.
    Download  
     
    Export citation  
     
    Bookmark   230 citations  
  • Models and Metaphors: Studies in Language and Philosophy.William Sacksteder - 1962 - Philosophy and Phenomenological Research 23 (2):289-290.
    Download  
     
    Export citation  
     
    Bookmark   125 citations