Switch to: References

Citations of:

Science in the age of computer simulation

Chicago: University of Chicago Press (2010)

Add citations

You must login to add citations.
  1. The Cost of Prediction.Johannes Lenhard, Simon Stephan & Hans Hasse - manuscript
    This paper examines a looming reproducibility crisis in the core of the hard sciences. Namely, it concentrates on molecular modeling and simulation (MMS), a family of methods that predict properties of substances through computing interactions on a molecular level and that is widely popular in physics, chemistry, materials science, and engineering. The paper argues that in order to make quantitative predictions, sophisticated models are needed which have to be evaluated with complex simulation procedures that amalgamate theoretical, technological, and social factors (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gilles Deleuze and the Atheist Machine: The Achievement of Philosophy.F. LeRon Shults - 2024 - Edinburgh University Press.
    Download  
     
    Export citation  
     
    Bookmark  
  • Interdisciplinarity in the Making: Models and Methods in Frontier Science.Nancy J. Nersessian - 2022 - Cambridge, MA: MIT.
    A cognitive ethnography of how bioengineering scientists create innovative modeling methods. In this first full-scale, long-term cognitive ethnography by a philosopher of science, Nancy J. Nersessian offers an account of how scientists at the interdisciplinary frontiers of bioengineering create novel problem-solving methods. Bioengineering scientists model complex dynamical biological systems using concepts, methods, materials, and other resources drawn primarily from engineering. They aim to understand these systems sufficiently to control or intervene in them. What Nersessian examines here is how cutting-edge bioengineering (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Using Computer Simulations for Hypothesis-Testing and Prediction: Epistemological Strategies.Tan Nguyen - manuscript
    This paper explores the epistemological challenges in using computer simulations for two distinct goals: explanation via hypothesis-testing and prediction. It argues that each goal requires different strategies for justifying inferences drawn from simulation results due to different practical and conceptual constraints. The paper identifies unique and shared strategies researchers employ to increase confidence in their inferences for each goal. For explanation via hypothesis-testing, researchers need to address the underdetermination, interpretability, and attribution challenges. In prediction, the emphasis is on the model's (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Sustainable Goals : Feasible Paths to Desirable Long-Term Futures.Patrik Baard - 2014 - Dissertation, Royal Institute of Technology, Stockholm
    The general aim of this licentiate thesis is to analyze the framework in which long-term goals are set and subsequently achieved. It is often claimed that goals should be realistic, meaning that they should be adjusted to known abilities. This thesis will argue that this might be very difficult in areas related to sustainable development and climate change adaptation, and that goals that are, to an acceptable degree, unrealistic, can have important functions. Essay I discusses long-term goal setting. When there (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Science, assertion, and the common ground.Corey Dethier - 2022 - Synthese 200 (1):1-19.
    I argue that the appropriateness of an assertion is sensitive to context—or, really, the “common ground”—in a way that hasn’t previously been emphasized by philosophers. This kind of context-sensitivity explains why some scientific conclusions seem to be appropriately asserted even though they are not known, believed, or justified on the available evidence. I then consider other recent attempts to account for this phenomenon and argue that if they are to be successful, they need to recognize the kind of context-sensitivity that (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Epistemic Risk in Representation.Stephanie Harvard & Eric Winsberg - 2022 - Kennedy Institute of Ethics Journal 32 (1):1-31.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Taming the tyranny of scales: models and scale in the geosciences.Alisa Bokulich - 2021 - Synthese 199 (5-6):14167-14199.
    While the predominant focus of the philosophical literature on scientific modeling has been on single-scale models, most systems in nature exhibit complex multiscale behavior, requiring new modeling methods. This challenge of modeling phenomena across a vast range of spatial and temporal scales has been called the tyranny of scales problem. Drawing on research in the geosciences, I synthesize and analyze a number of strategies for taming this tyranny in the context of conceptual, physical, and mathematical modeling. This includes several strategies (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Computer Simulations as Scientific Instruments.Ramón Alvarado - 2022 - Foundations of Science 27 (3):1183-1205.
    Computer simulations have conventionally been understood to be either extensions of formal methods such as mathematical models or as special cases of empirical practices such as experiments. Here, I argue that computer simulations are best understood as instruments. Understanding them as such can better elucidate their actual role as well as their potential epistemic standing in relation to science and other scientific methods, practices and devices.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Epistemic issues in computational reproducibility: software as the elephant in the room.Alexandre Hocquet & Frédéric Wieber - 2021 - European Journal for Philosophy of Science 11 (2):1-20.
    Computational reproducibility possesses its own dynamics and narratives of crisis. Alongside the difficulties of computing as an ubiquitous yet complex scientific activity, computational reproducibility suffers from a naive expectancy of total reproducibility and a moral imperative to embrace the principles of free software as a non-negotiable epistemic virtue. We argue that the epistemic issues at stake in actual practices of computational reproducibility are best unveiled by focusing on software as a pivotal concept, one that is surprisingly often overlooked in accounts (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The computational philosophy: simulation as a core philosophical method.Conor Mayo-Wilson & Kevin J. S. Zollman - 2021 - Synthese 199 (1-2):3647-3673.
    Modeling and computer simulations, we claim, should be considered core philosophical methods. More precisely, we will defend two theses. First, philosophers should use simulations for many of the same reasons we currently use thought experiments. In fact, simulations are superior to thought experiments in achieving some philosophical goals. Second, devising and coding computational models instill good philosophical habits of mind. Throughout the paper, we respond to the often implicit objection that computer modeling is “not philosophical.”.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • What can bouncing oil droplets tell us about quantum mechanics?Peter W. Evans & Karim P. Y. Thébault - 2020 - European Journal for Philosophy of Science 10 (3):1-32.
    A recent series of experiments have demonstrated that a classical fluid mechanical system, constituted by an oil droplet bouncing on a vibrating fluid surface, can be induced to display a number of behaviours previously considered to be distinctly quantum. To explain this correspondence it has been suggested that the fluid mechanical system provides a single-particle classical model of de Broglie’s idiosyncratic ‘double solution’ pilot wave theory of quantum mechanics. In this paper we assess the epistemic function of the bouncing oil (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Limits of Experimental Knowledge.Peter Evans & Karim P. Y. Thebault - 2020 - Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378 (2177).
    To demarcate the limits of experimental knowledge, we probe the limits of what might be called an experiment. By appeal to examples of scientific practice from astrophysics and analogue gravity, we demonstrate that the reliability of knowledge regarding certain phenomena gained from an experiment is not circumscribed by the manipulability or accessibility of the target phenomena. Rather, the limits of experimental knowledge are set by the extent to which strategies for what we call ‘inductive triangulation’ are available: that is, the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Degrees of Epistemic Opacity.Iñaki San Pedro - manuscript
    The paper analyses in some depth the distinction by Paul Humphreys between "epistemic opacity" —which I refer to as "weak epistemic opacity" here— and "essential epistemic opacity", and defends the idea that epistemic opacity in general can be made sense as coming in degrees. The idea of degrees of epistemic opacity is then exploited to show, in the context of computer simulations, the tight relation between the concept of epistemic opacity and actual scientific (modelling and simulation) practices. As a consequence, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Polycratic hierarchies and networks: what simulation-modeling at the LHC can teach us about the epistemology of simulation.Florian J. Boge & Christian Zeitnitz - 2020 - Synthese 199 (1-2):445-480.
    Large scale experiments at CERN’s Large Hadron Collider rely heavily on computer simulations, a fact that has recently caught philosophers’ attention. CSs obviously require appropriate modeling, and it is a common assumption among philosophers that the relevant models can be ordered into hierarchical structures. Focusing on LHC’s ATLAS experiment, we will establish three central results here: with some distinct modifications, individual components of ATLAS’ overall simulation infrastructure can be ordered into hierarchical structures. Hence, to a good degree of approximation, hierarchical (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Interactive biorobotics.Edoardo Datteri - 2020 - Synthese 198 (8):7577-7595.
    What can interactive robots offer to the study of social behaviour? Philosophical reflections about the use of robotic models in animal research have focused so far on methods involving robots which do not interact with the target system. Yet, leading researchers have claimed that interactive robots may constitute powerful experimental tools to study collective behaviour. Can they live up to these epistemic expectations? This question is addressed here by focusing on a particular experimental methodology involving interactive robots which has been (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • From Implausible Artificial Neurons to Idealized Cognitive Models: Rebooting Philosophy of Artificial Intelligence.Catherine Stinson - 2020 - Philosophy of Science 87 (4):590-611.
    There is a vast literature within philosophy of mind that focuses on artificial intelligence, but hardly mentions methodological questions. There is also a growing body of work in philosophy of science about modeling methodology that hardly mentions examples from cognitive science. Here these discussions are connected. Insights developed in the philosophy of science literature about the importance of idealization provide a way of understanding the neural implausibility of connectionist networks. Insights from neurocognitive science illuminate how relevant similarities between models and (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • How to Do Things with Theory: The Instrumental Role of Auxiliary Hypotheses in Testing.Corey Dethier - 2019 - Erkenntnis 86 (6):1453-1468.
    Pierre Duhem’s influential argument for holism relies on a view of the role that background theory plays in testing: according to this still common account of “auxiliary hypotheses,” elements of background theory serve as truth-apt premises in arguments for or against a hypothesis. I argue that this view is mistaken. Rather than serving as truth-apt premises in arguments, auxiliary hypotheses are employed as “epistemic tools”: instruments that perform specific tasks in connecting our theoretical questions with the world but that are (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Virtual Realism: Really Realism or only Virtually so? A Comment on D. J. Chalmers’s Petrus Hispanus Lectures.Claus Beisbart - 2019 - Disputatio 11 (55):297-331.
    What is the status of a cat in a virtual reality environment? Is it a real object? Or part of a fiction? Virtual realism, as defended by D. J. Chalmers, takes it to be a virtual object that really exists, that has properties and is involved in real events. His preferred specification of virtual realism identifies the cat with a digital object. The project of this paper is to use a comparison between virtual reality environments and scientific computer simulations to (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Why Simpler Computer Simulation Models Can Be Epistemically Better for Informing Decisions.Casey Helgeson, Vivek Srikrishnan, Klaus Keller & Nancy Tuana - 2021 - Philosophy of Science 88 (2):213-233.
    For computer simulation models to usefully inform climate risk management, uncertainties in model projections must be explored and characterized. Because doing so requires running the model many ti...
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Teste gravitaționale.Nicolae Sfetcu - 2022 - Cunoașterea Științifică, Issn 2971-9070, Vol. 1, Nr. 1, Sept. 2022.
    Cele mai multe experimente au confirmat relativitatea generală cu ajutorul tehnologiilor nou dezvoltate. S-a creat o bază tehnologică pentru astronomia undelor gravitaționale. S-au construit antene barogene criogenice și antene interferometrice laser performante, asociate cu analiza teoretică a experimentelor cu masele de testare, rezultând că sensibilitatea experimentelor depinde de izolarea termică, dacă dispozitivul înregistrează continuu coordonatele sensibilitatea antenei este limitată, și se poate crește sensibilitatea dacă se folosesc proceduri cuantice. Antenele pot ajuta în observarea radiației gravitaționale de fond și testarea relativității (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophie der Neurowissenschaften.Holger Lyre - 2017 - In Simon Lohse & Thomas Reydon (eds.), Grundriss Wissenschaftsphilosophie. Die Philosophien der Einzelwissenschaften. Hamburg: Meiner.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Practice oriented controversies and borrowed epistemic support in current evolutionary biology. The case of phylogeography.Alfonso Arroyo-Santos, Mark E. Olson & Francisco Vergara-Silva - 2015 - Perspectives on Science 23 (3):310-334.
    Although there is increasing recognition that theory and practice in science are often inseparably intertwined, discussions of scientific controversies often continue to focus on theory, and not practice or methodologies. As a contribution to constructing a framework towards understanding controversies linked to scientific practices, we introduce the notion of borrowed epistemic credibility, to describe the situation in which scientists exploit fallacious similarities between accepted tenets in other fields to garner support for a given position in their own field. Our proposal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Using Computer Simulations for Promoting Model-based Reasoning.Maria Develaki - 2017 - Science & Education 26 (7-9):1001-1027.
    Scientific reasoning is particularly pertinent to science education since it is closely related to the content and methodologies of science and contributes to scientific literacy. Much of the research in science education investigates the appropriate framework and teaching methods and tools needed to promote students’ ability to reason and evaluate in a scientific way. This paper aims to contribute to an extended understanding of the nature and pedagogical importance of model-based reasoning and to exemplify how using computer simulations can support (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Newton on Islandworld: Ontic-Driven Explanations of Scientific Method.Adrian Currie & Kirsten Walsh - 2018 - Perspectives on Science 26 (1):119-156.
    . Philosophers and scientists often cite ontic factors when explaining the methods and success of scientific inquiry. That is, the adoption of a method or approach is explained in reference to the kind of system in which the scientist is interested: these are explanations of why scientists do what they do, that appeal to properties of their target systems. We present a framework for understanding such “Opticks to his Principia. Newton’s optical work is largely experiment-driven, while the Principia is primarily (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Mapping an expanding territory: computer simulations in evolutionary biology.Philippe Huneman - 2014 - History and Philosophy of the Life Sciences 36 (1):60-89.
    The pervasive use of computer simulations in the sciences brings novel epistemological issues discussed in the philosophy of science literature since about a decade. Evolutionary biology strongly relies on such simulations, and in relation to it there exists a research program (Artificial Life) that mainly studies simulations themselves. This paper addresses the specificity of computer simulations in evolutionary biology, in the context (described in Sect. 1) of a set of questions about their scope as explanations, the nature of validation processes (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Structures in Real Theory Application: A Study in Feasible Epistemology.Robert H. C. Moir - 2013 - Dissertation, University of Western Ontario
    This thesis considers the following problem: What methods should the epistemology of science use to gain insight into the structure and behaviour of scientific knowledge and method in actual scientific practice? After arguing that the elucidation of epistemological and methodological phenomena in science requires a method that is rooted in formal methods, I consider two alternative methods for epistemology of science. One approach is the classical approaches of the syntactic and semantic views of theories. I show that typical approaches of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Varying the Explanatory Span: Scientific Explanation for Computer Simulations.Juan Manuel Durán - 2017 - International Studies in the Philosophy of Science 31 (1):27-45.
    This article aims to develop a new account of scientific explanation for computer simulations. To this end, two questions are answered: what is the explanatory relation for computer simulations? And what kind of epistemic gain should be expected? For several reasons tailored to the benefits and needs of computer simulations, these questions are better answered within the unificationist model of scientific explanation. Unlike previous efforts in the literature, I submit that the explanatory relation is between the simulation model and the (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Are computer simulations experiments? And if not, how are they related to each other?Claus Beisbart - 2018 - European Journal for Philosophy of Science 8 (2):171-204.
    Computer simulations and experiments share many important features. One way of explaining the similarities is to say that computer simulations just are experiments. This claim is quite popular in the literature. The aim of this paper is to argue against the claim and to develop an alternative explanation of why computer simulations resemble experiments. To this purpose, experiment is characterized in terms of an intervention on a system and of the observation of the reaction. Thus, if computer simulations are experiments, (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Tools for Evaluating the Consequences of Prior Knowledge, but no Experiments. On the Role of Computer Simulations in Science.Eckhart Arnold - manuscript
    There is an ongoing debate on whether or to what degree computer simulations can be likened to experiments. Many philosophers are sceptical whether a strict separation between the two categories is possible and deny that the materiality of experiments makes a difference (Morrison 2009, Parker 2009, Winsberg 2010). Some also like to describe computer simulations as a “third way” between experimental and theoretical research (Rohrlich 1990, Axelrod 2003, Kueppers/Lenhard 2005). In this article I defend the view that computer simulations are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Wissenschaft ohne Wahrheit und Erkenntnis. Das Problem epistemischer Verantwortung am Beispiel empirieferner Computersimulationen.Eckhart Arnold - 2013 - In Rafaela Hillerbrand & Florian Steger (eds.), Praxisfelder Angewandter Ethik. Ethische Orientierung in Medizin, Politik, Technik Und Wirtschaft. Münster: Mentis Verlag. pp. 309-331.
    Epistemic Responsibility means that scientists are responsible for their research being suitable to contribute to our understanding of the world, or at least some part of the world. As will be shown with the example of computer simulations in social sciences, this is unfortunately far from being understood as a matter of course. Rather, there exist whole research traditions in which the bulk of the contributions is quite free from any tangible purpose of enhancing our knowledge about anything. This essay (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What Counts as Scientific Data? A Relational Framework.Sabina Leonelli - 2015 - Philosophy of Science 82 (5):810-821.
    This paper proposes an account of scientific data that makes sense of recent debates on data-driven and ‘big data’ research, while also building on the history of data production and use particularly within biology. In this view, ‘data’ is a relational category applied to research outputs that are taken, at specific moments of inquiry, to provide evidence for knowledge claims of interest to the researchers involved. They do not have truth-value in and of themselves, nor can they be seen as (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • After Fifty Years, Why Are Protein X-ray Crystallographers Still in Business?Sandra D. Mitchell & Angela M. Gronenborn - 2015 - British Journal for the Philosophy of Science:axv051.
    It has long been held that the structure of a protein is determined solely by the interactions of the atoms in the sequence of amino acids of which it is composed, and thus the stable, biologically functional conformation should be predictable by ab initio or de novo methods. However, except for small proteins, ab initio predictions have not been successful. We explain why this is the case and argue that the relationship among the different methods, models, and representations of protein (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The cognitive integration of scientific instruments: Information, situated cognition, and scientific practice.Richard Heersmink - 2016 - Phenomenology and the Cognitive Sciences 15 (4):1-21.
    Researchers in the biological and biomedical sciences, particularly those working in laboratories, use a variety of artifacts to help them perform their cognitive tasks. This paper analyses the relationship between researchers and cognitive artifacts in terms of integration. It first distinguishes different categories of cognitive artifacts used in biological practice on the basis of their informational properties. This results in a novel classification of scientific instruments, conducive to an analysis of the cognitive interactions between researchers and artifacts. It then uses (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The cognitive neuroscience revolution.Worth Boone & Gualtiero Piccinini - 2016 - Synthese 193 (5):1509-1534.
    We outline a framework of multilevel neurocognitive mechanisms that incorporates representation and computation. We argue that paradigmatic explanations in cognitive neuroscience fit this framework and thus that cognitive neuroscience constitutes a revolutionary break from traditional cognitive science. Whereas traditional cognitive scientific explanations were supposed to be distinct and autonomous from mechanistic explanations, neurocognitive explanations aim to be mechanistic through and through. Neurocognitive explanations aim to integrate computational and representational functions and structures across multiple levels of organization in order to explain (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Why Monte Carlo Simulations Are Inferences and Not Experiments.Claus Beisbart & John D. Norton - 2012 - International Studies in the Philosophy of Science 26 (4):403-422.
    Monte Carlo simulations arrive at their results by introducing randomness, sometimes derived from a physical randomizing device. Nonetheless, we argue, they open no new epistemic channels beyond that already employed by traditional simulations: the inference by ordinary argumentation of conclusions from assumptions built into the simulations. We show that Monte Carlo simulations cannot produce knowledge other than by inference, and that they resemble other computer simulations in the manner in which they derive their conclusions. Simple examples of Monte Carlo simulations (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Old and New Problems in Philosophy of Measurement.Eran Tal - 2013 - Philosophy Compass 8 (12):1159-1173.
    The philosophy of measurement studies the conceptual, ontological, epistemic, and technological conditions that make measurement possible and reliable. A new wave of philosophical scholarship has emerged in the last decade that emphasizes the material and historical dimensions of measurement and the relationships between measurement and theoretical modeling. This essay surveys these developments and contrasts them with earlier work on the semantics of quantity terms and the representational character of measurement. The conclusions highlight four characteristics of the emerging research program in (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Computer Simulations in Science.Eric Winsberg - forthcoming - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Don’t Blame the Idealizations.Nicholaos Jones - 2013 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 44 (1):85-100.
    Idealizing conditions are scapegoats for scientific hypotheses, too often blamed for falsehood better attributed to less obvious sources. But while the tendency to blame idealizations is common among both philosophers of science and scientists themselves, the blame is misplaced. Attention to the nature of idealizing conditions, the content of idealized hypotheses, and scientists’ attitudes toward those hypotheses shows that idealizing conditions are blameless when hypotheses misrepresent. These conditions help to determine the content of idealized hypotheses, and they do so in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • In defence of the value free ideal.Gregor Betz - 2013 - European Journal for Philosophy of Science 3 (2):207-220.
    The ideal of value free science states that the justification of scientific findings should not be based on non-epistemic (e.g. moral or political) values. It has been criticized on the grounds that scientists have to employ moral judgements in managing inductive risks. The paper seeks to defuse this methodological critique. Allegedly value-laden decisions can be systematically avoided, it argues, by making uncertainties explicit and articulating findings carefully. Such careful uncertainty articulation, understood as a methodological strategy, is exemplified by the current (...)
    Download  
     
    Export citation  
     
    Bookmark   119 citations  
  • Neural Computation and the Computational Theory of Cognition.Gualtiero Piccinini & Sonya Bahar - 2013 - Cognitive Science 37 (3):453-488.
    We begin by distinguishing computationalism from a number of other theses that are sometimes conflated with it. We also distinguish between several important kinds of computation: computation in a generic sense, digital computation, and analog computation. Then, we defend a weak version of computationalism—neural processes are computations in the generic sense. After that, we reject on empirical grounds the common assimilation of neural computation to either analog or digital computation, concluding that neural computation is sui generis. Analog computation requires continuous (...)
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • (1 other version)A New Program for the Philosophy of Science?Ronald N. Giere - 2012 - Perspectives on Science 20 (3):339-343.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Agent-based Models as Fictive Instantiations of Ecological Processes.Steven L. Peck - 2012 - Philosophy, Theory, and Practice in Biology 4 (20130604).
    Frigg and Reiss (2009) argue that philosophical problems in simulation bear enough resemblance to recognized issues in the philosophy of modeling that they only pose challenges analogous to those found in standard analytic models used to represent natural systems. They suggest that there are no new philosophical problems in computer simulation modeling beyond those found in traditional mathematical modeling. Winsberg (2009) has countered that there appear to be genuinely new epistemological problems in simulation modeling because the knowledge obtained from them (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Instruments, agents, and artificial intelligence: novel epistemic categories of reliability.Eamon Duede - 2022 - Synthese 200 (6):1-20.
    Deep learning (DL) has become increasingly central to science, primarily due to its capacity to quickly, efficiently, and accurately predict and classify phenomena of scientific interest. This paper seeks to understand the principles that underwrite scientists’ epistemic entitlement to rely on DL in the first place and argues that these principles are philosophically novel. The question of this paper is not whether scientists can be justified in trusting in the reliability of DL. While today’s artificial intelligence exhibits characteristics common to (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Structure and applied mathematics.Travis McKenna - 2022 - Synthese 200 (5):1-31.
    ‘Mapping accounts’ of applied mathematics hold that the application of mathematics in physical science is best understood in terms of ‘mappings’ between mathematical structures and physical structures. In this paper, I suggest that mapping accounts rely on the assumption that the mathematics relevant to any application of mathematics in empirical science can be captured in an appropriate mathematical structure. If we are interested in assessing the plausibility of mapping accounts, we must ask ourselves: how plausible is this assumption as a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Computational modeling in philosophy: introduction to a topical collection.Simon Scheller, Christoph Merdes & Stephan Hartmann - 2022 - Synthese 200 (2):1-10.
    Computational modeling should play a central role in philosophy. In this introduction to our topical collection, we propose a small topology of computational modeling in philosophy in general, and show how the various contributions to our topical collection fit into this overall picture. On this basis, we describe some of the ways in which computational models from other disciplines have found their way into philosophy, and how the principles one found here still underlie current trends in the field. Moreover, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Two Dimensions of Opacity and the Deep Learning Predicament.Florian J. Boge - 2021 - Minds and Machines 32 (1):43-75.
    Deep neural networks have become increasingly successful in applications from biology to cosmology to social science. Trained DNNs, moreover, correspond to models that ideally allow the prediction of new phenomena. Building in part on the literature on ‘eXplainable AI’, I here argue that these models are instrumental in a sense that makes them non-explanatory, and that their automated generation is opaque in a unique way. This combination implies the possibility of an unprecedented gap between discovery and explanation: When unsupervised models (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The epistemic superiority of experiment to simulation.Sherrilyn Roush - 2018 - Synthese 195 (11):4883-4906.
    This paper defends the naïve thesis that the method of experiment has per se an epistemic superiority over the method of computer simulation, a view that has been rejected by some philosophers writing about simulation, and whose grounds have been hard to pin down by its defenders. I further argue that this superiority does not come from the experiment’s object being materially similar to the target in the world that the investigator is trying to learn about, as both sides of (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Analogue Quantum Simulation: A Philosophical Prospectus.Dominik Hangleiter, Jacques Carolan & Karim P. Y. Thebault - unknown
    This paper provides the first systematic philosophical analysis of an increasingly important part of modern scientific practice: analogue quantum simulation. We introduce the distinction between `simulation' and `emulation' as applied in the context of two case studies. Based upon this distinction, and building upon ideas from the recent philosophical literature on scientific understanding, we provide a normative framework to isolate and support the goals of scientists undertaking analogue quantum simulation and emulation. We expect our framework to be useful to both (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Diagnostics and the 'deconstruction' of models.Grant Fisher - unknown
    This paper argues that a significant focus in computational organic chemistry, alongside the construction and deployment of models, is the “deconstruction” of computational models. This practice has arisen in response to difficulties and controversies resulting from the use of plural methods and computational models to study organic reaction mechanisms. Diagnostic controllability is the capacity of cognitive agents to gain epistemic access to grey-boxed computational models, to identify and explain the impact of specific idealizations on results, and to demonstrate the applicability (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation