Switch to: Citations

Add references

You must login to add references.
  1. Glivenko and Kuroda for simple type theory.Chad E. Brown & Christine Rizkallah - 2014 - Journal of Symbolic Logic 79 (2):485-495.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Glivenko theorems and negative translations in substructural predicate logics.Hadi Farahani & Hiroakira Ono - 2012 - Archive for Mathematical Logic 51 (7-8):695-707.
    Along the same line as that in Ono (Ann Pure Appl Logic 161:246–250, 2009), a proof-theoretic approach to Glivenko theorems is developed here for substructural predicate logics relative not only to classical predicate logic but also to arbitrary involutive substructural predicate logics over intuitionistic linear predicate logic without exponentials QFLe. It is shown that there exists the weakest logic over QFLe among substructural predicate logics for which the Glivenko theorem holds. Negative translations of substructural predicate logics are studied by using (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Anti-realism and logic: truth as eternal.Neil Tennant - 1987 - New York: Oxford University Press.
    Anti-realism is a doctrine about logic, language, and meaning that is based on the work of Wittgenstein and Frege. In this book, Professor Tennant clarifies and develops Dummett's arguments for anti-realism and ultimately advocates a radical reform of our logical practices.
    Download  
     
    Export citation  
     
    Bookmark   123 citations  
  • Natural deduction: a proof-theoretical study.Dag Prawitz - 1965 - Mineola, N.Y.: Dover Publications.
    This volume examines the notion of an analytic proof as a natural deduction, suggesting that the proof's value may be understood as its normal form--a concept with significant implications to proof-theoretic semantics.
    Download  
     
    Export citation  
     
    Bookmark   349 citations  
  • Glivenko theorems revisited.Hiroakira Ono - 2010 - Annals of Pure and Applied Logic 161 (2):246-250.
    Glivenko-type theorems for substructural logics are comprehensively studied in the paper [N. Galatos, H. Ono, Glivenko theorems for substructural logics over FL, Journal of Symbolic Logic 71 1353–1384]. Arguments used there are fully algebraic, and based on the fact that all substructural logics are algebraizable 279–308] and also [N. Galatos, P. Jipsen, T. Kowalski, H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, in: Studies in Logic and the Foundations of Mathematics, vol. 151, Elsevier, 2007] for the details). As (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A short proof of Glivenko theorems for intermediate predicate logics.Christian Espíndola - 2013 - Archive for Mathematical Logic 52 (7-8):823-826.
    We give a simple proof-theoretic argument showing that Glivenko’s theorem for propositional logic and its version for predicate logic follow as an easy consequence of the deduction theorem, which also proves some Glivenko type theorems relating intermediate predicate logics between intuitionistic and classical logic. We consider two schemata, the double negation shift (DNS) and the one consisting of instances of the principle of excluded middle for sentences (REM). We prove that both schemata combined derive classical logic, while each one of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Glivenko Theorems for Substructural Logics over FL.Nikolaos Galatos & Hiroakira Ono - 2006 - Journal of Symbolic Logic 71 (4):1353 - 1384.
    It is well known that classical propositional logic can be interpreted in intuitionistic propositional logic. In particular Glivenko's theorem states that a formula is provable in the former iff its double negation is provable in the latter. We extend Glivenko's theorem and show that for every involutive substructural logic there exists a minimum substructural logic that contains the first via a double negation interpretation. Our presentation is algebraic and is formulated in the context of residuated lattices. In the last part (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Normal derivability in classical natural deduction.Jan Von Plato & Annika Siders - 2012 - Review of Symbolic Logic 5 (2):205-211.
    A normalization procedure is given for classical natural deduction with the standard rule of indirect proof applied to arbitrary formulas. For normal derivability and the subformula property, it is sufficient to permute down instances of indirect proof whenever they have been used for concluding a major premiss of an elimination rule. The result applies even to natural deduction for classical modal logic.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Subminimal logic and weak algebras.Rodolfo Ertola & Marta Sagastume - 2009 - Reports on Mathematical Logic:153-166.
    n this paper we investigate the implication-less fragment of Johansson's minimal logic. We call it subminimal logic and we study its associated algebras, which we call weak algebras. We prove the algebraic Glivenko theorem, soundness and completeness for this logic.
    Download  
     
    Export citation  
     
    Bookmark   4 citations