Switch to: Citations

Add references

You must login to add references.
  1. Is Leibnizian calculus embeddable in first order logic?Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Taras Kudryk, Thomas Mormann & David Sherry - 2017 - Foundations of Science 22 (4):73 - 88.
    To explore the extent of embeddability of Leibnizian infinitesimal calculus in first-order logic (FOL) and modern frameworks, we propose to set aside ontological issues and focus on pro- cedural questions. This would enable an account of Leibnizian procedures in a framework limited to FOL with a small number of additional ingredients such as the relation of infinite proximity. If, as we argue here, first order logic is indeed suitable for developing modern proxies for the inferential moves found in Leibnizian infinitesimal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Nonarchimedean Fields and Asymptotic Expansions.A. H. Lightstone & Abraham Robinson - 1981 - Journal of Symbolic Logic 46 (1):163-164.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Non-standard Analysis.Gert Heinz Müller - 2016 - Princeton University Press.
    Considered by many to be Abraham Robinson's magnum opus, this book offers an explanation of the development and applications of non-standard analysis by the mathematician who founded the subject. Non-standard analysis grew out of Robinson's attempt to resolve the contradictions posed by infinitesimals within calculus. He introduced this new subject in a seminar at Princeton in 1960, and it remains as controversial today as it was then. This paperback reprint of the 1974 revised edition is indispensable reading for anyone interested (...)
    Download  
     
    Export citation  
     
    Bookmark   172 citations  
  • Solving ordinary differential equations by working with infinitesimals numerically on the Infinity Computer.Yaroslav Sergeyev - 2013 - Applied Mathematics and Computation 219 (22):10668–10681.
    There exists a huge number of numerical methods that iteratively construct approximations to the solution y(x) of an ordinary differential equation (ODE) y′(x) = f(x,y) starting from an initial value y_0=y(x_0) and using a finite approximation step h that influences the accuracy of the obtained approximation. In this paper, a new framework for solving ODEs is presented for a new kind of a computer – the Infinity Computer (it has been patented and its working prototype exists). The new computer is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.Vladimir Kanovei, Mikhail G. Katz & Thomas Mormann - 2013 - Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond. [REVIEW]Mikhail G. Katz & David Sherry - 2013 - Erkenntnis 78 (3):571-625.
    Many historians of the calculus deny significant continuity between infinitesimal calculus of the seventeenth century and twentieth century developments such as Robinson’s theory. Robinson’s hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus.Alexandre Borovik & Mikhail G. Katz - 2012 - Foundations of Science 17 (3):245-276.
    Cauchy’s contribution to the foundations of analysis is often viewed through the lens of developments that occurred some decades later, namely the formalisation of analysis on the basis of the epsilon-delta doctrine in the context of an Archimedean continuum. What does one see if one refrains from viewing Cauchy as if he had read Weierstrass already? One sees, with Felix Klein, a parallel thread for the development of analysis, in the context of an infinitesimal-enriched continuum. One sees, with Emile Borel, (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers.Yaroslav Sergeyev - 2007 - Chaos, Solitons and Fractals 33 (1):50-75.
    The paper considers a new type of objects – blinking fractals – that are not covered by traditional theories studying dynamics of self-similarity processes. It is shown that the new approach allows one to give various quantitative characteristics of the newly introduced and traditional fractals using infinite and infinitesimal numbers proposed recently. In this connection, the problem of the mathematical modelling of continuity is discussed in detail. A strong advantage of the introduced computational paradigm consists of its well-marked numerical character (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Internal Set Theory: A New Approach to Nonstandard Analysis.Edward Nelson - 1977 - Journal of Symbolic Logic 48 (4):1203-1204.
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • The strength of nonstandard methods in arithmetic.C. Ward Henson, Matt Kaufmann & H. Jerome Keisler - 1984 - Journal of Symbolic Logic 49 (4):1039-1058.
    We consider extensions of Peano arithmetic suitable for doing some of nonstandard analysis, in which there is a predicate N(x) for an elementary initial segment, along with axiom schemes approximating ω 1 -saturation. We prove that such systems have the same proof-theoretic strength as their natural analogues in second order arithmetic. We close by presenting an even stronger extension of Peano arithmetic, which is equivalent to ZF for arithmetic statements.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Weak theories of nonstandard arithmetic and analysis.Jeremy Avigad - manuscript
    A general method of interpreting weak higher-type theories of nonstandard arithmetic in their standard counterparts is presented. In particular, this provides natural nonstandard conservative extensions of primitive recursive arithmetic, elementary recursive arithmetic, and polynomial-time computable arithmetic. A means of formalizing basic real analysis in such theories is sketched.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The exact (up to infinitesimals) infinite perimeter of the Koch snowflake and its finite area.Yaroslav Sergeyev - 2016 - Communications in Nonlinear Science and Numerical Simulation 31 (1-3):21–29.
    The Koch snowflake is one of the first fractals that were mathematically described. It is interesting because it has an infinite perimeter in the limit but its limit area is finite. In this paper, a recently proposed computational methodology allowing one to execute numerical computations with infinities and infinitesimals is applied to study the Koch snowflake at infinity. Numerical computations with actual infinite and infinitesimal numbers can be executed on the Infinity Computer being a new supercomputer patented in USA and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Selected Papers of Abraham Robinson.: Model Theory and Algebra.H. J. Keisler & A. Robinson - 1982 - Journal of Symbolic Logic 47 (1):197-203.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Proofs and Retributions, Or: Why Sarah Can’t Take Limits.Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz & Mary Schaps - 2015 - Foundations of Science 20 (1):1-25.
    The small, the tiny, and the infinitesimal have been the object of both fascination and vilification for millenia. One of the most vitriolic reviews in mathematics was that written by Errett Bishop about Keisler’s book Elementary Calculus: an Infinitesimal Approach. In this skit we investigate both the argument itself, and some of its roots in Bishop George Berkeley’s criticism of Leibnizian and Newtonian Calculus. We also explore some of the consequences to students for whom the infinitesimal approach is congenial. The (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Interpretation of percolation in terms of infinity computations.Yaroslav Sergeyev, Dmitri Iudin & Masaschi Hayakawa - 2012 - Applied Mathematics and Computation 218 (16):8099-8111.
    In this paper, a number of traditional models related to the percolation theory has been considered by means of new computational methodology that does not use Cantor’s ideas and describes infinite and infinitesimal numbers in accordance with the principle ‘The part is less than the whole’. It gives a possibility to work with finite, infinite, and infinitesimal quantities numerically by using a new kind of a compute - the Infinity Computer – introduced recently in [18]. The new approach does not (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography.Karin Usadi Katz & Mikhail G. Katz - 2012 - Foundations of Science 17 (1):51-89.
    We analyze the developments in mathematical rigor from the viewpoint of a Burgessian critique of nominalistic reconstructions. We apply such a critique to the reconstruction of infinitesimal analysis accomplished through the efforts of Cantor, Dedekind, and Weierstrass; to the reconstruction of Cauchy’s foundational work associated with the work of Boyer and Grabiner; and to Bishop’s constructivist reconstruction of classical analysis. We examine the effects of a nominalist disposition on historiography, teaching, and research.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The Olympic medals ranks, lexicographic ordering and numerical infinities.Yaroslav Sergeyev - 2015 - The Mathematical Intelligencer 37 (2):4-8.
    Several ways used to rank countries with respect to medals won during Olympic Games are discussed. In particular, it is shown that the unofficial rank used by the Olympic Committee is the only rank that does not allow one to use a numerical counter for ranking – this rank uses the lexicographic ordering to rank countries: one gold medal is more precious than any number of silver medals and one silver medal is more precious than any number of bronze medals. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Abraham Robinson. Non-standard analysis. Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings, series A, vol. 64 (1961), pp. 432–440; also Indagationes mathematicae, vol. 23 (1961), pp. 432-440. - Abraham Robinson. Topics in non-Archimedean mathematics. The theory of models, Proceedings of the 1963 International Symposium at Berkeley, edited by J. W. Addison, Leon Henkin, and Alfred Tarski, Studies in logic and the foundations of mathematics, North-Holland Publishing Company, Amsterdam1965, pp. 285–298. - Abraham Robinson. On generalized limits and linear functionals. Pacific journal of mathematics, vol. 14 (1964), pp. 269–283. - Alan R. Bernstein and Abraham Robinson. Solution of an invariant subspace problem of K. T. Smith and P. R. Halmos.Pacific journal of mathematics, vol. 16 (1966), pp. 421–431. - Abraham Robinson. Non-standard analysis.Studies in logic and the foundations of mathematics. North-Holland Publishing Company, Amsterdam1966, xi + 293 pp. [REVIEW]Gert Heinz Müller - 1969 - Journal of Symbolic Logic 34 (2):292-294.
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Arithmetic of Infinity.Yaroslav D. Sergeyev - 2013 - E-book.
    This book presents a new type of arithmetic that allows one to execute arithmetical operations with infinite numbers in the same manner as we are used to do with finite ones. The problem of infinity is considered in a coherent way different from (but not contradicting to) the famous theory founded by Georg Cantor. Surprisingly, the introduced arithmetical operations result in being very simple and are obtained as immediate extensions of the usual addition, multiplication, and division of finite numbers to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Ivor Grattan-Guinness (1941-2014).Albert C. Lewis - 2015 - Russell: The Journal of Bertrand Russell Studies 35 (2).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the strength of nonstandard analysis.C. Ward Henson & H. Jerome Keisler - 1986 - Journal of Symbolic Logic 51 (2):377-386.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Letter from the Editor.A. S. Homyakov - 1994 - Eleutheria.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Edward Nelson.Mikhail G. Katz & Semen S. Kutateladze - 2015 - Review of Symbolic Logic 8 (3):607-610.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Review: Th. Skolem, Peano's Axioms and Models of Arithmetic. [REVIEW]Solomon Feferman - 1957 - Journal of Symbolic Logic 22 (3):306-306.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Leibniz versus Ishiguro: Closing a Quarter Century of Syncategoremania.Tiziana Bascelli, Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, David M. Schaps & David Sherry - 2016 - Hopos: The Journal of the International Society for the History of Philosophy of Science 6 (1):117-147.
    Did Leibniz exploit infinitesimals and infinities à la rigueur or only as shorthand for quantified propositions that refer to ordinary Archimedean magnitudes? Hidé Ishiguro defends the latter position, which she reformulates in terms of Russellian logical fictions. Ishiguro does not explain how to reconcile this interpretation with Leibniz’s repeated assertions that infinitesimals violate the Archimedean property (i.e., Euclid’s Elements, V.4). We present textual evidence from Leibniz, as well as historical evidence from the early decades of the calculus, to undermine Ishiguro’s (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Review: Jerzy Los, Quelques Remarques, Theoremes et Problemes sur les Classes Definissables d'Algebres. [REVIEW]Kurt Schutte - 1960 - Journal of Symbolic Logic 25 (2):168-168.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Historia Mathematica.[author unknown] - 1973 - Journal of Symbolic Logic 38 (4):670-670.
    Download  
     
    Export citation  
     
    Bookmark   8 citations