Switch to: Citations

Add references

You must login to add references.
  1. Set theory and the continuum hypothesis.Paul J. Cohen - 1966 - New York,: W. A. Benjamin.
    This exploration of a notorious mathematical problem is the work of the man who discovered the solution. Written by an award-winning professor at Stanford University, it employs intuitive explanations as well as detailed mathematical proofs in a self-contained treatment. This unique text and reference is suitable for students and professionals. 1966 edition. Copyright renewed 1994.
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • (2 other versions)Set Theory and the Continuum Hypothesis.Kenneth Kunen - 1966 - Journal of Symbolic Logic 35 (4):591-592.
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • (2 other versions)Set Theory.Keith J. Devlin - 1981 - Journal of Symbolic Logic 46 (4):876-877.
    Download  
     
    Export citation  
     
    Bookmark   163 citations  
  • Set Theory. An Introduction to Independence Proofs.James E. Baumgartner & Kenneth Kunen - 1986 - Journal of Symbolic Logic 51 (2):462.
    Download  
     
    Export citation  
     
    Bookmark   149 citations  
  • Strongly Amorphous Sets and Dual Dedekind Infinity.Martin Goldstern - 1997 - Mathematical Logic Quarterly 43 (1):39-44.
    1. If A is strongly amorphous , then its power set P is dually Dedekind infinite, i. e., every function from P onto P is injective. 2. The class of “inexhaustible” sets is not closed under supersets unless AC holds.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Consequences of arithmetic for set theory.Lorenz Halbeisen & Saharon Shelah - 1994 - Journal of Symbolic Logic 59 (1):30-40.
    In this paper, we consider certain cardinals in ZF (set theory without AC, the axiom of choice). In ZFC (set theory with AC), given any cardinals C and D, either C ≤ D or D ≤ C. However, in ZF this is no longer so. For a given infinite set A consider $\operatorname{seq}^{1 - 1}(A)$ , the set of all sequences of A without repetition. We compare $|\operatorname{seq}^{1 - 1}(A)|$ , the cardinality of this set, to |P(A)|, the cardinality of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (2 other versions)The Axiom of Choice.Gershon Sageev - 1976 - Journal of Symbolic Logic 41 (4):784-785.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • (1 other version)Zur Axiomatik der Mengenlehre (Fundierungs‐ und Auswahlaxiom).Ernst Specker - 1957 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 3 (13‐20):173-210.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Ein Beitrag Zur Kardinalzahlarithmetik Ohne Auswahlaxiom.H. Läuchli - 1961 - Mathematical Logic Quarterly 7 (7-10):141-145.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • [Omnibus Review].Thomas Jech - 1992 - Journal of Symbolic Logic 57 (1):261-262.
    Reviewed Works:John R. Steel, A. S. Kechris, D. A. Martin, Y. N. Moschovakis, Scales on $\Sigma^1_1$ Sets.Yiannis N. Moschovakis, Scales on Coinductive Sets.Donald A. Martin, John R. Steel, The Extent of Scales in $L$.John R. Steel, Scales in $L$.
    Download  
     
    Export citation  
     
    Bookmark   219 citations