Switch to: Citations

Add references

You must login to add references.
  1. A geometric introduction to forking and thorn-forking.Hans Adler - 2009 - Journal of Mathematical Logic 9 (1):1-20.
    A ternary relation [Formula: see text] between subsets of the big model of a complete first-order theory T is called an independence relation if it satisfies a certain set of axioms. The primary example is forking in a simple theory, but o-minimal theories are also known to have an interesting independence relation. Our approach in this paper is to treat independence relations as mathematical objects worth studying. The main application is a better understanding of thorn-forking, which turns out to be (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Simplicity in compact abstract theories.Itay Ben-Yaacov - 2003 - Journal of Mathematical Logic 3 (02):163-191.
    We continue [2], developing simplicity in the framework of compact abstract theories. Due to the generality of the context we need to introduce definitions which differ somewhat from the ones use in first order theories. With these modified tools we obtain more or less classical behaviour: simplicity is characterized by the existence of a certain notion of independence, stability is characterized by simplicity and bounded multiplicity, and hyperimaginary canonical bases exist.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Properties and Consequences of Thorn-Independence.Alf Onshuus - 2006 - Journal of Symbolic Logic 71 (1):1 - 21.
    We develop a new notion of independence (þ-independence, read "thorn"-independence) that arises from a family of ranks suggested by Scanlon (þ-ranks). We prove that in a large class of theories (including simple theories and o-minimal theories) this notion has many of the properties needed for an adequate geometric structure. We prove that þ-independence agrees with the usual independence notions in stable, supersimple and o-minimal theories. Furthermore, we give some evidence that the equivalence between forking and þ-forking in simple theories might (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Classification Theory and the Number of Nonisomorphic Models.S. Shelah - 1982 - Journal of Symbolic Logic 47 (3):694-696.
    Download  
     
    Export citation  
     
    Bookmark   206 citations  
  • The number of types in simple theories.Enrique Casanovas - 1999 - Annals of Pure and Applied Logic 98 (1-3):69-86.
    We continue work of Shelah on the cardinality of families of pairwise incompatible types in simple theories obtaining characterizations of simple and supersimple theories. We develop a local analysis of the number of types in simple theories and we find a new example of a simple unstable theory.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Some remarks on indiscernible sequences.Enrique Casanovas - 2003 - Mathematical Logic Quarterly 49 (5):475-478.
    We prove a property of generic homogeneity of tuples starting an infinite indiscernible sequence in a simple theory and we use it to give a shorter proof of the Independence Theorem for Lascar strong types. We also characterize the relation of starting an infinite indiscernible sequence in terms of coheirs.
    Download  
     
    Export citation  
     
    Bookmark   1 citation