Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Classical Recursion Theory.Peter G. Hinman - 2001 - Bulletin of Symbolic Logic 7 (1):71-73.
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • (1 other version)S. Barry Cooper, Computability Theory: Chapman & Hall/crc, 2003, US$ 76.95, 424 pp., ISBN-10: 1584882379, ISBN-13: 978-1584882374, hardcover. Dimensions (in inches): 9.7 × 6.2 × 1.1. [REVIEW]Lars Kristiansen - 2007 - Studia Logica 86 (1):145-146.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)A high noncuppable $${\Sigma^0_2}$$ e-degree.Matthew B. Giorgi - 2008 - Archive for Mathematical Logic 47 (3):181-191.
    We construct a ${\Sigma^0_2}$ e-degree which is both high and noncuppable. Thus demonstrating the existence of a high e-degree whose predecessors are all properly ${\Sigma^0_2}$.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Then-rea enumeration degrees are dense.Alistair H. Lachlan & Richard A. Shore - 1992 - Archive for Mathematical Logic 31 (4):277-285.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)Cupping and noncupping in the enumeration degrees of ∑20 sets.S. Barry Cooper, Andrea Sorbi & Xiaoding Yi - 1996 - Annals of Pure and Applied Logic 82 (3):317-342.
    We prove the following three theorems on the enumeration degrees of ∑20 sets. Theorem A: There exists a nonzero noncuppable ∑20 enumeration degree. Theorem B: Every nonzero Δ20enumeration degree is cuppable to 0′e by an incomplete total enumeration degree. Theorem C: There exists a nonzero low Δ20 enumeration degree with the anticupping property.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Limit lemmas and jump inversion in the enumeration degrees.Evan J. Griffiths - 2003 - Archive for Mathematical Logic 42 (6):553-562.
    We show that there is a limit lemma for enumeration reducibility to 0 e ', analogous to the Shoenfield Limit Lemma in the Turing degrees, which relativises for total enumeration degrees. Using this and `good approximations' we prove a jump inversion result: for any set W with a good approximation and any set X< e W such that W≤ e X' there is a set A such that X≤ e A< e W and A'=W'. (All jumps are enumeration degree jumps.) (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Goodness in the enumeration and singleton degrees.Charles M. Harris - 2010 - Archive for Mathematical Logic 49 (6):673-691.
    We investigate and extend the notion of a good approximation with respect to the enumeration ${({\mathcal D}_{\rm e})}$ and singleton ${({\mathcal D}_{\rm s})}$ degrees. We refine two results by Griffith, on the inversion of the jump of sets with a good approximation, and we consider the relation between the double jump and index sets, in the context of enumeration reducibility. We study partial order embeddings ${\iota_s}$ and ${\hat{\iota}_s}$ of, respectively, ${{\mathcal D}_{\rm e}}$ and ${{\mathcal D}_{\rm T}}$ (the Turing degrees) into (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations