Switch to: Citations

Add references

You must login to add references.
  1. Parts of Classes.David K. Lewis - 1990 - Blackwell.
    Download  
     
    Export citation  
     
    Bookmark   619 citations  
  • Science Without Numbers: A Defence of Nominalism.Hartry H. Field - 1980 - Princeton, NJ, USA: Princeton University Press.
    Science Without Numbers caused a stir in 1980, with its bold nominalist approach to the philosophy of mathematics and science. It has been unavailable for twenty years and is now reissued in a revised edition with a substantial new preface presenting the author's current views and responses to the issues raised in subsequent debate.
    Download  
     
    Export citation  
     
    Bookmark   559 citations  
  • Realism, Mathematics & Modality.Hartry H. Field - 1989 - New York, NY, USA: Blackwell.
    Download  
     
    Export citation  
     
    Bookmark   405 citations  
  • Parts of Classes.David K. Lewis - 1991 - Mind 100 (3):394-397.
    Download  
     
    Export citation  
     
    Bookmark   656 citations  
  • Realism, Mathematics, and Modality.Hartry Field - 1988 - Philosophical Topics 16 (1):57-107.
    Download  
     
    Export citation  
     
    Bookmark   461 citations  
  • Constructibility and mathematical existence.Charles S. Chihara - 1990 - New York: Oxford University Press.
    This book is concerned with `the problem of existence in mathematics'. It develops a mathematical system in which there are no existence assertions but only assertions of the constructibility of certain sorts of things. It explores the philosophical implications of such an approach through an examination of the writings of Field, Burgess, Maddy, Kitcher, and others.
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • There is No Easy Road to Nominalism.M. Colyvan - 2010 - Mind 119 (474):285-306.
    Hartry Field has shown us a way to be nominalists: we must purge our scientific theories of quantification over abstracta and we must prove the appropriate conservativeness results. This is not a path for the faint hearted. Indeed, the substantial technical difficulties facing Field's project have led some to explore other, easier options. Recently, Jody Azzouni, Joseph Melia, and Stephen Yablo have argued that it is a mistake to read our ontological commitments simply from what the quantifiers of our best (...)
    Download  
     
    Export citation  
     
    Bookmark   109 citations  
  • Subsystems of Second Order Arithmetic.Stephen G. Simpson - 1999 - Studia Logica 77 (1):129-129.
    Download  
     
    Export citation  
     
    Bookmark   238 citations  
  • Science without numbers, A Defence of Nominalism.Hartry Field - 1980 - Revue Philosophique de la France Et de l'Etranger 171 (4):502-503.
    Download  
     
    Export citation  
     
    Bookmark   167 citations  
  • There are no abstract objects.Cian Dorr - 2008 - In Theodore Sider, John P. Hawthorne & Dean W. Zimmerman (eds.), Contemporary debates in metaphysics. Malden, MA: Blackwell.
    I explicate and defend the claim that, fundamentally speaking, there are no numbers, sets, properties or relations. The clarification consists in some remarks on the relevant sense of ‘fundamentally speaking’ and the contrasting sense of ‘superficially speaking’. The defence consists in an attempt to rebut two arguments for the existence of such entities. The first is a version of the indispensability argument, which purports to show that certain mathematical entities are required for good scientific explanations. The second is a speculative (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • A Logical Foundation for Potentialist Set Theory.Sharon Berry - 2022 - Cambridge University Press.
    In many ways set theory lies at the heart of modern mathematics, and it does powerful work both philosophical and mathematical – as a foundation for the subject. However, certain philosophical problems raise serious doubts about our acceptance of the axioms of set theory. In a detailed and original reassessment of these axioms, Sharon Berry uses a potentialist approach to develop a unified determinate conception of set-theoretic truth that vindicates many of our intuitive expectations regarding set theory. Berry further defends (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Mathematics without Numbers. Towards a Modal-Structural Interpretation.Geoffrey Hellman - 1991 - Tijdschrift Voor Filosofie 53 (4):726-727.
    Download  
     
    Export citation  
     
    Bookmark   112 citations  
  • In the Light of Logic.Solomon Feferman - 1998 - New York and Oxford: Oxford University Press.
    In this collection of essays written over a period of twenty years, Solomon Feferman explains advanced results in modern logic and employs them to cast light on significant problems in the foundations of mathematics. Most troubling among these is the revolutionary way in which Georg Cantor elaborated the nature of the infinite, and in doing so helped transform the face of twentieth-century mathematics. Feferman details the development of Cantorian concepts and the foundational difficulties they engendered. He argues that the freedom (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Mathematics is megethology.David K. Lewis - 1993 - Philosophia Mathematica 1 (1):3-23.
    is the second-order theory of the part-whole relation. It can express such hypotheses about the size of Reality as that there are inaccessibly many atoms. Take a non-empty class to have exactly its non-empty subclasses as parts; hence, its singleton subclasses as atomic parts. Then standard set theory becomes the theory of the member-singleton function—better, the theory of all singleton functions—within the framework of megethology. Given inaccessibly many atoms and a specification of which atoms are urelements, a singleton function exists, (...)
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • Recombination unbound.Daniel Nolan - 1996 - Philosophical Studies 84 (2-3):239-262.
    This paper discusses the principle of recombination for possible worlds. It argues that arguments against unrestricted recombination offered by Forrest and Armstrong and by David Lewis fail, but a related argument is a challenge, and recommends that we accept an unrestricted principle of recombination and the conclusion that possible worlds form a proper class.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Does category theory provide a framework for mathematical structuralism?Geoffrey Hellman - 2003 - Philosophia Mathematica 11 (2):129-157.
    Category theory and topos theory have been seen as providing a structuralist framework for mathematics autonomous vis-a-vis set theory. It is argued here that these theories require a background logic of relations and substantive assumptions addressing mathematical existence of categories themselves. We propose a synthesis of Bell's many-topoi view and modal-structuralism. Surprisingly, a combination of mereology and plural quantification suffices to describe hypothetical large domains, recovering the Grothendieck method of universes. Both topos theory and set theory can be carried out (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Wide Sets, ZFCU, and the Iterative Conception.Christopher Menzel - 2014 - Journal of Philosophy 111 (2):57-83.
    The iterative conception of set is typically considered to provide the intuitive underpinnings for ZFCU (ZFC+Urelements). It is an easy theorem of ZFCU that all sets have a definite cardinality. But the iterative conception seems to be entirely consistent with the existence of “wide” sets, sets (of, in particular, urelements) that are larger than any cardinal. This paper diagnoses the source of the apparent disconnect here and proposes modifications of the Replacement and Powerset axioms so as to allow for the (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On Properties.Hilary Putnam - 1970 - In Donald Davidson, Carl Gustav Hempel & Nicholas Rescher (eds.), Essays in Honor of Carl G. Hempel: A Tribute on the Occasion of His Sixty-Fifth Birthday. Dordrecht, Netherland: Springer. pp. 235-254.
    It has been maintained by such philosophers as Quine and Goodman that purely ‘extensional’ language suffices for all the purposes of properly formalized scientific discourse. Those entities that were traditionally called ‘universals’ — properties, concepts, forms, etc. — are rejected by these extensionalist philosophers on the ground that ‘the principle of individuation is not clear’. It is conceded that science requires that we allow something tantamount to quantification over non-particulars (or, anyway, over things that are not material objects, not space-time (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Fictionalism, the Safety Result and counterpossibles.Lukas Skiba - 2019 - Analysis 79 (4):647-658.
    Fictionalists maintain that possible worlds, numbers or composite objects exist only according to theories which are useful but false. Hale, Divers and Woodward have provided arguments which threaten to show that fictionalists must be prepared to regard the theories in question as contingently, rather than necessarily, false. If warranted, this conclusion would significantly limit the appeal of the fictionalist strategy rendering it unavailable to anyone antecedently convinced that mathematics and metaphysics concern non-contingent matters. I try to show that their arguments (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Replacement of auxiliary expressions.W. C. - 1956 - Philosophical Review 65 (1):38-55.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Structuralism without structures.Hellman Geoffrey - 1996 - Philosophia Mathematica 4 (2):100-123.
    Recent technical developments in the logic of nominalism make it possible to improve and extend significantly the approach to mathematics developed in Mathematics without Numbers. After reviewing the intuitive ideas behind structuralism in general, the modal-structuralist approach as potentially class-free is contrasted broadly with other leading approaches. The machinery of nominalistic ordered pairing (Burgess-Hazen-Lewis) and plural quantification (Boolos) can then be utilized to extend the core systems of modal-structural arithmetic and analysis respectively to full, classical, polyadic third- and fourthorder number (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Replacement of Auxiliary Expressions.William Craig - 1956 - Philosophical Review 65 (1):38-55.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Fictionalism and inferential safety.Richard Woodward - 2010 - Analysis 70 (3):409-417.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Reasoning Under a Presupposition and the Export Problem: The Case of Applied Mathematics.Mary Leng - 2017 - Australasian Philosophical Review 1 (2):133-142.
    ABSTRACT‘expressionist’ accounts of applied mathematics seek to avoid the apparent Platonistic commitments of our scientific theories by holding that we ought only to believe their mathematics-free nominalistic content. The notion of ‘nominalistic content’ is, however, notoriously slippery. Yablo's account of non-catastrophic presupposition failure offers a way of pinning down this notion. However, I argue, its reliance on possible worlds machinery begs key questions against Platonism. I propose instead that abstract expressionists follow Geoffrey Hellman's lead in taking the assertoric content of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Lewis on Mereology and Set Theory.John P. Burgess - 2015 - In Barry Loewer & Jonathan Schaffer (eds.), A companion to David Lewis. Chichester, West Sussex ;: Wiley-Blackwell. pp. 459–469.
    David Lewis in the short monograph Parts of Classes (PC) undertakes a fundamental re‐examination of the relationship between mereology, the general theory of parts, and set theory, the general theory of collections. Given Lewis's theses, to be an element of a set or member of class is just to have a singleton that is a part thereof. Lewis in PC adds a claim of kind of ontological innocence, comparable to that of first‐order logic, for mereology. The only substantive assumption of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A nominalistic proof of the conservativeness of set theory.Hartry Field - 1992 - Journal of Philosophical Logic 21 (2):111 - 123.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Models of second-order zermelo set theory.Gabriel Uzquiano - 1999 - Bulletin of Symbolic Logic 5 (3):289-302.
    In [12], Ernst Zermelo described a succession of models for the axioms of set theory as initial segments of a cumulative hierarchy of levelsUαVα. The recursive definition of theVα's is:Thus, a little reflection on the axioms of Zermelo-Fraenkel set theory shows thatVω, the first transfinite level of the hierarchy, is a model of all the axioms ofZFwith the exception of the axiom of infinity. And, in general, one finds that ifκis a strongly inaccessible ordinal, thenVκis a model of all of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Review of S cience Without Numbers: A Defense of Nominalism. [REVIEW]David Malament - 1982 - Journal of Philosophy 79 (9):523-534.
    Download  
     
    Export citation  
     
    Bookmark   71 citations