Switch to: Citations

Add references

You must login to add references.
  1. Foundations of Statistical Physics, Spacetime Theories, and Quantum Field Theory-Changing the Subject: Redei on Causal Dependence and Screening Off in Relativistic Quantum Field Theory.Rob Clifton & Laura Ruetsche - 1999 - Philosophy of Science 66 (3):S156-S169.
    In a pair of articles and in his recent book, Miklos Redei has taken enormous strides toward characterizing the conditions under which relativistic quantum field theory is a safe setting for the deployment of causal talk. Here, we challenge the adequacy of the accounts of causal dependence and screening off on which rests the relevance of Redei's theorems to the question of causal good behavior in the theory.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Changing the subject: Redei on causal dependence and screening off in relativistic quantum field theory.Rob Clifton & Laura Ruetsche - 1999 - Philosophy of Science 66 (3):169.
    In a pair of articles (1996, 1997) and in his recent book (1998), Miklos Redei has taken enormous strides toward characterizing the conditions under which relativistic quantum field theory is a safe setting for the deployment of causal talk. Here, we challenge the adequacy of the accounts of causal dependence and screening off on which rests the relevance of Redei's theorems to the question of causal good behavior in the theory.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Stochastic Einstein Locality Revisited.Jeremy Butterfield - 2007 - British Journal for the Philosophy of Science 58 (4):805-867.
    I discuss various formulations of stochastic Einstein locality (SEL), which is a version of the idea of relativistic causality, that is, the idea that influences propagate at most as fast as light. SEL is similar to Reichenbach's Principle of the Common Cause (PCC), and Bell's Local Causality. My main aim is to discuss formulations of SEL for a fixed background spacetime. I previously argued that SEL is violated by the outcome dependence shown by Bell correlations, both in quantum mechanics and (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Proof of Kolmogorovian censorship.Gergely Bana & Thomas Durt - 1997 - Foundations of Physics 27 (10):1355-1373.
    Many argued (Accardi and Fedullo, Pitowsky) that Kolmogorov's axioms of classical probability theory are incompatible with quantum probabilities, and that this is the reason for the violation of Bell's inequalities. Szabó showed that, in fact, these inequalities are not violated by the experimentally observed frequencies if we consider the real, “effective” frequencies. We prove in this work a theorem which generalizes this results: “effective” frequencies associated to quantum events always admit a Kolmogorovian representation, when these events are collected through different (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The principle of the common cause faces the Bernstein paradox.Jos Uffink - 1999 - Philosophy of Science 66 (3):525.
    I consider the problem of extending Reichenbach's principle of the common cause to more than two events, vis-a-vis an example posed by Bernstein. It is argued that the only reasonable extension of Reichenbach's principle stands in conflict with a recent proposal due to Horwich. I also discuss prospects of the principle of the common cause in the light of these and other difficulties known in the literature and argue that a more viable version of the principle is the one provided (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Critical Reflections on Quantum Probability Theory.László Szabó - 2001 - Vienna Circle Institute Yearbook 8:201-219.
    The story of quantum probability theory and quantum logic begins with von Neumann’s recognition1, that quantum mechanics can be regarded as a kind of “probability theory”, if the subspace lattice L of the system’s Hilbert space H plays the role of event algebra and the ‘tr’-s play the role of probability distributions over these events. This idea had been completed in the Gleason theorem 2.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Local Primitive Causality and the Common Cause Principle in Quantum Field Theory.Miklos Redei & Stephen J. Summers - 2001 - Foundations of Physics 32 (3):335-355.
    If $\mathcal{A}$ (V) is a net of local von Neumann algebras satisfying standard axioms of algebraic relativistic quantum field theory and V 1 and V 2 are spacelike separated spacetime regions, then the system ( $\mathcal{A}$ (V 1 ), $\mathcal{A}$ (V 2 ), φ) is said to satisfy the Weak Reichenbach's Common Cause Principle iff for every pair of projections A∈ $\mathcal{A}$ (V 1 ), B∈ $\mathcal{A}$ (V 2 ) correlated in the normal state φ there exists a projection C (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Reichenbach's common cause principle and quantum field theory.Miklós Rédei - 1997 - Foundations of Physics 27 (10):1309-1321.
    Reichenbach's principles of a probabilistic common cause of probabilistic correlations is formulated in terms of relativistic quantum field theory, and the problem is raised whether correlations in relativistic quantum field theory between events represented by projections in local observable algebrasA(V1) andA(V2) pertaining to spacelike separated spacetime regions V1 and V2 can be explained by finding a probabilistic common cause of the correlation in Reichenbach's sense. While this problem remains open, it is shown that if all superluminal correlations predicted by the (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • On the physical significance of the locality conditions in the bell arguments.Jon P. Jarrett - 1984 - Noûs 18 (4):569-589.
    Download  
     
    Export citation  
     
    Bookmark   166 citations  
  • Reichenbachian Common Cause Systems of Arbitrary Finite Size Exist.Gábor Hofer-Szabó & Miklós Rédei - 2006 - Foundations of Physics 36 (5):745-756.
    A partition $\{C_i\}_{i\in I}$ of a Boolean algebra Ω in a probability measure space (Ω, p) is called a Reichenbachian common cause system for the correlation between a pair A,B of events in Ω if any two elements in the partition behave like a Reichenbachian common cause and its complement; the cardinality of the index set I is called the size of the common cause system. It is shown that given any non-strict correlation in (Ω, p), and given any finite (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Reichenbach’s Common Cause Principle in Algebraic Quantum Field Theory with Locally Finite Degrees of Freedom.Gábor Hofer-Szabó & Péter Vecsernyés - 2012 - Foundations of Physics 42 (2):241-255.
    In the paper it will be shown that Reichenbach’s Weak Common Cause Principle is not valid in algebraic quantum field theory with locally finite degrees of freedom in general. Namely, for any pair of projections A, B supported in spacelike separated double cones ${\mathcal{O}}_{a}$ and ${\mathcal{O}}_{b}$ , respectively, a correlating state can be given for which there is no nontrivial common cause (system) located in the union of the backward light cones of ${\mathcal{O}}_{a}$ and ${\mathcal{O}}_{b}$ and commuting with the both (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Comparing causality principles.Joe Henson - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (3):519-543.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Beables for quantum field theory.J. S. Bell - 1987 - In Basil J. Hiley & D. Peat (eds.), Quantum Implications: Essays in Honour of David Bohm. Methuen. pp. 227--234.
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • Reichenbachian common cause systems.Gábor Hofer-Szabó & Miklos Redei - 2004 - International Journal of Theoretical Physics 43:1819-1826.
    A partition $\{C_i\}_{i\in I}$ of a Boolean algebra $\cS$ in a probability measure space $(\cS,p)$ is called a Reichenbachian common cause system for the correlated pair $A,B$ of events in $\cS$ if any two elements in the partition behave like a Reichenbachian common cause and its complement, the cardinality of the index set $I$ is called the size of the common cause system. It is shown that given any correlation in $(\cS,p)$, and given any finite size $n>2$, the probability space (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Algebraic quantum field theory.Hans Halvorson & Michael Mueger - 2006 - In J. Butterfield & J. Earman (eds.), Handbook of the philosophy of physics. Kluwer Academic Publishers.
    Algebraic quantum field theory provides a general, mathematically precise description of the structure of quantum field theories, and then draws out consequences of this structure by means of various mathematical tools -- the theory of operator algebras, category theory, etc.. Given the rigor and generality of AQFT, it is a particularly apt tool for studying the foundations of QFT. This paper is a survey of AQFT, with an orientation towards foundational topics. In addition to covering the basics of the theory, (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • 5. Markov properties and quantum experiments.Clark Glymour - unknown
    Few people have thought so hard about the nature of the quantum theory as has Jeff Bub,· and so it seems appropriate to offer in his honor some reflections on that theory. My topic is an old one, the consistency of our microscopic theories with our macroscopic theories, my example, the Aspect experiments (Aspect et al., 1981, 1982, 1982a; Clauser and Shimony, l978;_Duncan and Kleinpoppen, 199,8) is familiar, and my sirnplrcation of it is borrowed. All that is new here is (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Bell Inequalities: Many Questions, a Few Answers.Nicolas Gisin - 2009 - In Wayne C. Myrvold & Joy Christian (eds.), Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle. Springer. pp. 125--138.
    What can be more fascinating than experimental metaphysics, to quote one of Abner Shimony’s enlightening expressions? Bell inequalities are at the heart of the study of nonlocality. I present a list of open questions, organised in three categories: fundamental; linked to experiments; and exploring nonlocality as a resource. New families of inequalities for binary outcomes are presented.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Events and processes in the quantum world.Abner Shimony - 1986 - In Roger Penrose & C. J. Isham (eds.), Quantum Concepts in Space and Time. New York ;Oxford University Press. pp. 182--203.
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • Kolmogorovian Censorship Hypothesis For General Quantum Probability Theories.MiklÓs RÉdei - 2010 - Manuscrito 33 (1):365-380.
    It is shown that the Kolmogorovian Censorship Hypothesis, according to which quantum probabilities are interpretable as conditional probabilities in a classical probability measure space, holds not only for Hilbert space quantum mechanics but for general quantum probability theories based on the theory of von Neumann algebras.
    Download  
     
    Export citation  
     
    Bookmark   5 citations