Switch to: References

Citations of:

Beables for quantum field theory

In Basil J. Hiley & D. Peat (eds.), Quantum Implications: Essays in Honour of David Bohm. Methuen. pp. 227--234 (1987)

Add citations

You must login to add citations.
  1. (1 other version)Bohmian mechanics.Sheldon Goldstein - 2008 - Stanford Encyclopedia of Philosophy.
    Bohmian mechanics, which is also called the de Broglie-Bohm theory, the pilot-wave model, and the causal interpretation of quantum mechanics, is a version of quantum theory discovered by Louis de Broglie in 1927 and rediscovered by David Bohm in 1952. It is the simplest example of what is often called a hidden variables interpretation of quantum mechanics. In Bohmian mechanics a system of particles is described in part by its wave function, evolving, as usual, according to Schrödinger's equation. However, the (...)
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  • The quantum measurement problem: State of play.David Wallace - 2008 - In Dean Rickles (ed.), The Ashgate Companion to Contemporary Philosophy of Physics. Ashgate.
    This is a preliminary version of an article to appear in the forthcoming Ashgate Companion to the New Philosophy of Physics.In it, I aim to review, in a way accessible to foundationally interested physicists as well as physics-informed philosophers, just where we have got to in the quest for a solution to the measurement problem. I don't advocate any particular approach to the measurement problem (not here, at any rate!) but I do focus on the importance of decoherence theory to (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Relativistic Quantum Mechanics through Frame‐Dependent Constructions.Jeffrey A. Barrett - 2005 - Philosophy of Science 72 (5):802-813.
    This paper is concerned with the possibility and nature of relativistic hidden-variable formulations of quantum mechanics. Both ad hoc teleological constructions of spacetime maps and frame-dependent constructions of spacetime maps are considered. While frame-dependent constructions are clearly preferable, they provide neither mechanical nor causal explanations for local quantum events. Rather, the hiddenvariable dynamics used in such constructions is just a rule that helps to characterize the set of all possible spacetime maps. But while having neither mechanical nor causal explanations of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Bergson and the holographic theory of mind.Stephen E. Robbins - 2006 - Phenomenology and the Cognitive Sciences 5 (3-4):365-394.
    Bergson’s model of time (1889) is perhaps the proto-phenomenological theory. It is part of a larger model of mind (1896) which can be seen in modern light as describing the brain as supporting a modulated wave within a holographic field, specifying the external image of the world, and wherein subject and object are differentiated not in terms of space, but of time. Bergson’s very concrete model is developed and deepened with Gibson’s ecological model of perception. It is applied to the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Why the de Broglie-Bohm theory is probably wrong.Shan Gao - manuscript
    We investigate the validity of the field explanation of the wave function by analyzing the mass and charge density distributions of a quantum system. It is argued that a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. This is also a consequence of protective measurement. If the wave function is a physical field, then the mass and charge density will be distributed in space simultaneously (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Protective Measurement and the Meaning of the Wave Function.Shan Gao - 2011
    This article analyzes the implications of protective measurement for the meaning of the wave function. According to protective measurement, a charged quantum system has mass and charge density proportional to the modulus square of its wave function. It is shown that the mass and charge density is not real but effective, formed by the ergodic motion of a localized particle with the total mass and charge of the system. Moreover, it is argued that the ergodic motion is not continuous but (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Trouble in Paradise?Craig Callender & Robert Weingard - 1997 - The Monist 80 (1):24-43.
    Throughout its history, Bohm's interpretation of quantum mechanics has been systematically misunderstood and ignored. It was often dismissed for reasons having more to do with politics, religion, positivism, and sloppy thought, than for reasons central to physics. Still, like any physical theory, Bohm's theory faces challenges of varying degrees of severity. Here we review and evaluate some of these challenges.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Philosophy enters the optics laboratory: Bell's theorem and its first experimental tests.Olival Freire - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (4):577-616.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Philosophy enters the optics laboratory: Bell's theorem and its first experimental tests (1965–1982).Olival Freire - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (4):577-616.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Author Meets Critics: Jill North, Physics, Structure, and Reality.David John Baker, Wayne Myrvold, Jill North & Laura Ruetsche - manuscript
    Comments and replies from the 2021 Eastern APA book symposium on Jill North's Physics, Structure, and Reality.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Ontic Probability Interpretation of Quantum Theory - Part III: Schrödinger’s Cat and the ‘Basis’ and ‘Measurement’ Pseudo-Problems (2nd edition).Felix Alba-Juez - manuscript
    Most of us are either philosophically naïve scientists or scientifically naïve philosophers, so we misjudged Schrödinger’s “very burlesque” portrait of Quantum Theory (QT) as a profound conundrum. The clear signs of a strawman argument were ignored. The Ontic Probability Interpretation (TOPI) is a metatheory: a theory about the meaning of QT. Ironically, equating Reality with Actuality cannot explain actual data, justifying the century-long philosophical struggle. The actual is real but not everything real is actual. The ontic character of the Probable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A persistent particle ontology for QFT in terms of the Dirac sea.Dirk-André Deckert, Michael Esfeld & Andrea Oldofredi - forthcoming - British Journal for the Philosophy of Science.
    We show that the Bohmian approach in terms of persisting particles that move on continuous trajectories following a deterministic law can be literally applied to QFT. By means of the Dirac sea model – exemplified in the electron sector of the standard model neglecting radiation – we explain how starting from persisting particles, one is led to standard QFT employing creation and annihilation operators when tracking the dynamics with respect to a reference state, the so-called vacuum. Since on the level (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The meaning of the wave function: in search of the ontology of quantum mechanics.Shan Gao - 2017 - New York, NY, USA: Cambridge University Press.
    The meaning of the wave function has been a hot topic of debate since the early days of quantum mechanics. Recent years have witnessed a growing interest in this long-standing question. Is the wave function ontic, directly representing a state of reality, or epistemic, merely representing a state of knowledge, or something else? If the wave function is not ontic, then what, if any, is the underlying state of reality? If the wave function is indeed ontic, then exactly what physical (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • General relativity needs no interpretation.Erik Curiel - 2009 - Philosophy of Science 76 (1):44-72.
    I argue that, contrary to the recent claims of physicists and philosophers of physics, general relativity requires no interpretation in any substantive sense of the term. I canvass the common reasons given in favor of the alleged need for an interpretation, including the difficulty in coming to grips with the physical significance of diffeomorphism invariance and of singular structure, and the problems faced in the search for a theory of quantum gravity. I find that none of them shows any defect (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Wigner's friend and bell's field beables.Jeffrey A. Barrett - unknown
    A field-theoretic version of Wigner’s friend (1961) illustrates how the quantum measurement problem arises for field theory. Similarly, considering spacelike separate measurements of entangled fields by observers akin to Wigner’s friend shows the sense in which relativistic constraints make the measurement problem particularly difficult to resolve in the context of a relativistic field theory. We will consider proposals by Wigner (1961), Bloch (1967), Helwig and Kraus (1970), and Bell (1984) for resolving the measurement problem for quantum field theory. We will (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Universal History and the Emergence of Species Being.Brown Haines - manuscript
    This paper seeks to recover the function of universal history, which was to place particulars into relation with universals. By the 20th century universal history was largely discredited because of an idealism that served to lend epistemic coherence to the overwhelming complexity arising from universal history's comprehensive scope. Idealism also attempted to account for history's being "open"--for the human ability to transcend circumstance. The paper attempts to recover these virtues without the idealism by defining universal history not by its scope (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Particles, Cutoffs and Inequivalent Representations: Fraser and Wallace on Quantum Field Theory.Matthias Egg, Vincent Lam & Andrea Oldofredi - 2017 - Foundations of Physics 47 (3):453-466.
    We critically review the recent debate between Doreen Fraser and David Wallace on the interpretation of quantum field theory, with the aim of identifying where the core of the disagreement lies. We show that, despite appearances, their conflict does not concern the existence of particles or the occurrence of unitarily inequivalent representations. Instead, the dispute ultimately turns on the very definition of what a quantum field theory is. We further illustrate the fundamental differences between the two approaches by comparing them (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Robustness, Diversity of Evidence, and Probabilistic Independence.Jonah N. Schupbach - 2015 - In Uskali Mäki, Stéphanie Ruphy, Gerhard Schurz & Ioannis Votsis (eds.), Recent Developments in the Philosophy of Science. Cham: Springer. pp. 305-316.
    In robustness analysis, hypotheses are supported to the extent that a result proves robust, and a result is robust to the extent that we detect it in diverse ways. But what precise sense of diversity is at work here? In this paper, I show that the formal explications of evidential diversity most often appealed to in work on robustness – which all draw in one way or another on probabilistic independence – fail to shed light on the notion of diversity (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On the common structure of the primitive ontology approach and information-theoretic interpretation of quantum theory.Lucas Dunlap - 2015 - Topoi 34 (2):359-367.
    We use the primitive ontology framework of Allori et al. to analyze the quantum information-theoretic interpretation of Bub and Pitowsky. There are interesting parallels between the two approaches, which differentiate them both from the more standard realist interpretations of quantum theory. Where they differ, however, is in terms of their commitments to an underlying ontology on which the manifest image of the world supervenes. Employing the primitive ontology framework in this way makes perspicuous the differences between the quantum information-theoretic interpretation, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Diese Verdammte Quantenspringerei.Anthony Sudbery - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (3):387-411.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Diese verdammte quantenspringerei.Anthony Sudbery - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (3):387-411.
    It is argued that the conventional formulation of quantum mechanics is inadequate: the usual interpretation of the mathematical formalism in terms of the results of measurements cannot be applied to situations in which discontinuous transitions (''quantum jumps'') are observed as they happen, since nothing that can be called a measurement happens at the moment of observation. Attempts to force such observations into the standard mould lead to absurd results: ''a watched pot never boils''. Experiments show both that this result is (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Collapse theories as beable theories.Guido Bacciagaluppi - 2010 - Manuscrito 33 (1):19-54.
    I discuss the interpretation of spontaneous collapse theories, with particular reference to Bell's suggestion that the stochastic jumps in the evolution of the wave function should be considered as local beables of the theory. I develop this analogy in some detail for the case of non-relativistic GRW-type theories, using a generalisation of Bell's notion of beables to POV measures. In the context of CSL-type theories, this strategy appears to fail, and I discuss instead Ghirardi and co-workers' mass-density interpretation and its (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Quantum Hamiltonians and stochastic jumps.Sheldon Goldstein - manuscript
    With many Hamiltonians one can naturally associate a |Ψ|2-distributed Markov process. For nonrelativistic quantum mechanics, this process is in fact deterministic, and is known as Bohmian mechanics. For the Hamiltonian of a quantum field theory, it is typically a jump process on the configuration space of a variable number of particles. We define these processes for regularized quantum field theories, thereby generalizing previous work of John S. Bell [3] and of ourselves [11]. We introduce a formula expressing the jump rates (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Are all particles identical?Sheldon Goldstein - manuscript
    We consider the possibility that all particles in the world are fundamentally identical, i.e., belong to the same species. Different masses, charges, spins, flavors, or colors then merely correspond to different quantum states of the same particle, just as spin-up and spin-down do. The implications of this viewpoint can be best appreciated within Bohmian mechanics, a precise formulation of quantum mechanics with particle trajectories. The implementation of this viewpoint in such a theory leads to trajectories different from those of the (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Superluminal signalling.Steven Weinstein - unknown
    Special relativity is said to prohibit faster-than-light (superluminal) signalling, yet controversy regularly arises as to whether this or that physical phenomenon violates the prohibition. I argue that the controversy is a result of a lack of clarity as to what it means to `signal', and I propose a criterion. I show that although we have no reason to think that one can send signals faster than light, this is not prohibited by special relativity.
    Download  
     
    Export citation  
     
    Bookmark  
  • What you always wanted to know about Bohmian mechanics but were afraid to ask.Oliver Passon - unknown
    Bohmian mechanics is an alternative interpretation of quantum mechanics. We outline the main characteristics of its non-relativistic formulation. Most notably it does provide a simple solution to the infamous measurement problem of quantum mechanics. Presumably the most common objection against Bohmian mechanics is based on its non-locality and its apparent conflict with relativity and quantum field theory. However, several models for a quantum field theoretical generalization do exist. We give a non-technical account of some of these models.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Probability and time symmetry in classical Markov processes.Guido Bacciagaluppi - unknown
    Definitions of time symmetry and examples of time-directed behaviour are discussed in the framework of discrete Markov processes. It is argued that typical examples of time-directed behaviour can be described using time-symmetric transition probabilities. Some current arguments in favour of a distinction between past and future on the basis of probabilistic considerations are thereby judged to be unjustified.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • How to interpret quantum mechanics.Jeffrey Bub - 1994 - Erkenntnis 41 (2):253 - 273.
    I formulate the interpretation problem of quantum mechanics as the problem of identifying all possible maximal sublattices of quantum propositions that can be taken as simultaneously determinate, subject to certain constraints that allow the representation of quantum probabilities as measures over truth possibilities in the standard sense, and the representation of measurements in terms of the linear dynamics of the theory. The solution to this problem yields a modal interpretation that I show to be a generalized version of Bohm's hidden (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The preferred-basis problem and the quantum mechanics of everything.Jeffrey A. Barrett - 2005 - British Journal for the Philosophy of Science 56 (2):199-220.
    argued that there are two options for what he called a realistic solution to the quantum measurement problem: (1) select a preferred set of observables for which definite values are assumed to exist, or (2) attempt to assign definite values to all observables simultaneously (1810–1). While conventional wisdom has it that the second option is ruled out by the Kochen-Specker theorem, Vink nevertheless advocated it. Making every physical quantity determinate in quantum mechanics carries with it significant conceptual costs, but it (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Relativistic hidden variable theories?Frank Arntzenius - 1994 - Erkenntnis 41 (2):207 - 231.
    I show that for any quantum dynamics and any choice of observables as hidden variables an adequate hidden variable theory always exists. I argue that hidden variable theories have no more problems in reconciling non-locality with relativity than no-hidden-variable theories.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Indeterminism and the direction of time.Frank Arntzenius - 1995 - Topoi 14 (1):67-81.
    Many phenomena in the world display a striking time-asymmetry: the forwards transition frequencies are approximately invariant while the backwards ones are not. I argue in this paper that theories of such phenomena will entail that time has a direction, and that quantum mechanics in particular entails that the future is objectively different from the past.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Determinate values for quantum observables.Roderich Tumulka - 2007 - British Journal for the Philosophy of Science 58 (2):355 - 360.
    This is a comment on J. A. Barrett's article 'The Preferred-Basis Problem and the Quantum Mechanics of Everything' ([2005]), which concerns theories postulating that certain quantum observables have determinate values, corresponding to additional (often called 'hidden') variables. I point out that it is far from clear, for most observables, what such a postulate is supposed to mean, unless the postulated additional variable is related to a clear ontology in space-time, such as particle world lines, string world sheets, or fields.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The dissipative approach to quantum field theory: conceptual foundations and ontological implications.Andrea Oldofredi & Hans Christian Öttinger - 2020 - European Journal for Philosophy of Science 11 (1):1-36.
    Many attempts have been made to provide Quantum Field Theory with conceptually clear and mathematically rigorous foundations; remarkable examples are the Bohmian and the algebraic perspectives respectively. In this essay we introduce the dissipative approach to QFT, a new alternative formulation of the theory explaining the phenomena of particle creation and annihilation starting from nonequilibrium thermodynamics. It is shown that DQFT presents a rigorous mathematical structure, and a clear particle ontology, taking the best from the mentioned perspectives. Finally, after the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Particle Creation and Annihilation: Two Bohmian Approaches.Andrea Oldofredi - 2018 - Lato Sensu: Revue de la Société de Philosophie des Sciences 5 (1):77-85.
    This paper reviews and discusses two extensions of Bohmian Mechanics to the phenomena of particle creation and annihilation typically observed in Quantum Field Theory : the so-called Bell-type Quantum Field Theory and the Dirac Sea representation. These theories have a secure metaphysical basis as they postulate a particle ontology while satisfying the requirements imposed by the Primitive Ontology approach to quantum physics. Furthermore, their methodological perspective intentionally provides a set of rules to immunize physical theories to the conceptual and technical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Probabilities in deBroglie-Bohm Theory: Towards a Stochastic Alternative (Version 0.1 beta).Patrick Dürr & Alexander Ehmann - manuscript
    We critically examine the role and status probabilities, as they enter via the Quantum Equilibrium Hypothesis, play in the standard, deterministic interpretation of deBroglie’s and Bohm’s Pilot Wave Theory (dBBT), by considering interpretations of probabilities in terms of ignorance, typicality and Humean Best Systems, respectively. We argue that there is an inherent conflict between dBBT and probabilities, thus construed. The conflict originates in dBBT’s deterministic nature, rooted in the Guidance Equation. Inquiring into the latter’s role within dBBT, we find it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the relation between the probabilistic characterization of the common cause and Bell׳s notion of local causality.Gábor Hofer-Szabó - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 49:32-41.
    In the paper the relation between the standard probabilistic characterization of the common cause and Bell's notion of local causality will be investigated. It will be shown that the probabilistic common cause follows from local causality if one accepts, as Bell did, two assumptions concerning the common cause: first, the common cause is localized in the intersection of the past of the correlating events; second, it provides a complete specification of the `beables' of this intersection. However, neither assumptions are a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Scientific Pluralism.Stephen H. Kellert, Helen E. Longino & C. Kenneth Waters (eds.) - 1956 - Univ of Minnesota Press.
    Scientific pluralism is an issue at the forefront of philosophy of science. This landmark work addresses the question, Can pluralism be advanced as a general, philosophical interpretation of science?
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Why the quantum?Jeffrey Bub - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (2):241-266.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • The Notion of Locality in Relational Quantum Mechanics.P. Martin-Dussaud, C. Rovelli & F. Zalamea - 2019 - Foundations of Physics 49 (2):96-106.
    The term ‘locality’ is used in different contexts with different meanings. There have been claims that relational quantum mechanics is local, but it is not clear then how it accounts for the effects that go under the usual name of quantum non-locality. The present article shows that the failure of ‘locality’ in the sense of Bell, once interpreted in the relational framework, reduces to the existence of a common cause in an indeterministic context. In particular, there is no need to (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • On the plurality of quantum theories: Quantum theory as a framework and its implications for the quantum measurement problem.David Wallace - 2020 - In Steven French & Juha Saatsi (eds.), Scientific Realism and the Quantum. Oxford: Oxford University Press.
    `Quantum theory' is not a single physical theory but a framework in which many different concrete theories fit. As such, a solution to the quantum measurement problem ought to provide a recipe to interpret each such concrete theory, in a mutually consistent way. But with the exception of the Everett interpretation, the mainextant solutions either try to make sense of the abstract framework as if it were concrete, or else interpret one particular quantum theory under the fiction that it is (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Entanglement and disentanglement in relativistic quantum mechanics.Jeffrey A. Barrett - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 48 (2):168-174.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Does Quantum Nonlocality Irremediably Conflict with Special Relativity?GianCarlo Ghirardi - 2010 - Foundations of Physics 40 (9-10):1379-1395.
    We reconsider the problem of the compatibility of quantum nonlocality and the requests for a relativistically invariant theoretical scheme. We begin by discussing a recent important paper by T. Norsen on this problem and we enlarge our considerations to give a general picture of the conceptually relevant issue to which this paper is devoted.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Mass, matter, and energy. A relativistic approach.Eftichios Bitsakis - 1991 - Foundations of Physics 21 (1):63-81.
    The debate concerning the relations between matter and motion has the same age as philosophy itself. In modern times this problem was transformed into the one concerning the relations between mass and energy. Newton identified mass with matter. Classical thermodynamics brought this conception to its logical conclusion, establishing an ontic dichotomy between mass-matter and energy. On the basis of this pre-relativistic conception, Einstein's famous equation has been interpreted as a relation of equivalence between mass-matter and energy. Nevertheless, if we reject (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Mechanics is About Quantum Information.Jeffrey Bub - 2005 - Foundations of Physics 35 (4):541-560.
    I argue that quantum mechanics is fundamentally a theory about the representation and manipulation of information, not a theory about the mechanics of nonclassical waves or particles. The notion of quantum information is to be understood as a new physical primitive—just as, following Einstein’s special theory of relativity, a field is no longer regarded as the physical manifestation of vibrations in a mechanical medium, but recognized as a new physical primitive in its own right.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Stochasticity and Bell-type quantum field theory.Andrea Oldofredi - 2020 - Synthese 197 (2):731-750.
    This paper critically discusses an objection proposed by Nikolić against the naturalness of the stochastic dynamics implemented by the Bell-type quantum field theory, an extension of Bohmian mechanics able to describe the phenomena of particles creation and annihilation. Here I present: Nikolić’s ideas for a pilot-wave theory accounting for QFT phenomenology evaluating the robustness of his criticism, Bell’s original proposal for a Bohmian QFT with a particle ontology and the mentioned Bell-type QFT. I will argue that although Bell’s model should (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Is an Electron a Charge Cloud? A Reexamination of Schrödinger’s Charge Density Hypothesis.Shan Gao - 2018 - Foundations of Science 23 (1):145-157.
    This article re-examines Schrödinger’s charge density hypothesis, according to which the charge of an electron is distributed in the whole space, and the charge density in each position is proportional to the modulus squared of the wave function of the electron there. It is shown that the charge distribution of a quantum system can be measured by protective measurements as expectation values of certain observables, and the results as predicted by quantum mechanics confirm Schrödinger’s original hypothesis. Moreover, the physical origin (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Von Neumann’s ‘No Hidden Variables’ Proof: A Re-Appraisal. [REVIEW]Jeffrey Bub - 2010 - Foundations of Physics 40 (9-10):1333-1340.
    Since the analysis by John Bell in 1965, the consensus in the literature is that von Neumann’s ‘no hidden variables’ proof fails to exclude any significant class of hidden variables. Bell raised the question whether it could be shown that any hidden variable theory would have to be nonlocal, and in this sense ‘like Bohm’s theory.’ His seminal result provides a positive answer to the question. I argue that Bell’s analysis misconstrues von Neumann’s argument. What von Neumann proved was the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Does time-symmetry imply retrocausality? How the quantum world says “Maybe”?Huw Price - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (2):75-83.
    It has often been suggested that retrocausality offers a solution to some of the puzzles of quantum mechanics: e.g., that it allows a Lorentz-invariant explanation of Bell correlations, and other manifestations of quantum nonlocality, without action-at-a-distance. Some writers have argued that time-symmetry counts in favour of such a view, in the sense that retrocausality would be a natural consequence of a truly time-symmetric theory of the quantum world. Critics object that there is complete time-symmetry in classical physics, and yet no (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Single-World Theory of the Extended Wigner’s Friend Experiment.Anthony Sudbery - 2017 - Foundations of Physics 47 (5):658-669.
    Frauchiger and Renner have recently claimed to prove that “Single-world interpretations of quantum theory cannot be self-consistent”. This is contradicted by a construction due to Bell, inspired by Bohmian mechanics, which shows that any quantum system can be modelled in such a way that there is only one “world” at any time, but the predictions of quantum theory are reproduced. This Bell–Bohmian theory is applied to the experiment proposed by Frauchiger and Renner, and their argument is critically examined. It is (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Not throwing out the baby with the bathwater: Bell's condition of local causality mathematically 'sharp and clean'.Michiel P. Seevinck & Jos Uffink - 2011 - In Dennis Dieks, Wenceslao Gonzalo, Thomas Uebel, Stephan Hartmann & Marcel Weber (eds.), Explanation, Prediction, and Confirmation. Springer. pp. 425--450.
    The starting point of the present paper is Bell’s notion of local causality and his own sharpening of it so as to provide for mathematical formalisation. Starting with Norsen’s analysis of this formalisation, it is subjected to a critique that reveals two crucial aspects that have so far not been properly taken into account. These are the correct understanding of the notions of sufficiency, completeness and redundancy involved; and the fact that the apparatus settings and measurement outcomes have very different (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations