Switch to: Citations

References in:

Cognitive dynamical models as minimal models

Synthese 199 (1):2353-2373 (2021)

Add references

You must login to add references.
  1. What Might Cognition Be, If Not Computation?Tim Van Gelder - 1995 - Journal of Philosophy 92 (7):345 - 381.
    Download  
     
    Export citation  
     
    Bookmark   305 citations  
  • The Covering Law Model Applied to Dynamical Cognitive Science: A Comment on Joel Walmsley.Raoul Gervais & Erik Weber - 2011 - Minds and Machines 21 (1):33-39.
    In a 2008 paper, Walmsley argued that the explanations employed in the dynamical approach to cognitive science, as exemplified by the Haken, Kelso and Bunz model of rhythmic finger movement, and the model of infant preservative reaching developed by Esther Thelen and her colleagues, conform to Carl Hempel and Paul Oppenheim’s deductive-nomological model of explanation (also known as the covering law model). Although we think Walmsley’s approach is methodologically sound in that it starts with an analysis of scientific practice rather (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The Nature of Dynamical Explanation.Carlos Zednik - 2011 - Philosophy of Science 78 (2):238-263.
    The received view of dynamical explanation is that dynamical cognitive science seeks to provide covering law explanations of cognitive phenomena. By analyzing three prominent examples of dynamicist research, I show that the received view is misleading: some dynamical explanations are mechanistic explanations, and in this way resemble computational and connectionist explanations. Interestingly, these dynamical explanations invoke the mathematical framework of dynamical systems theory to describe mechanisms far more complex and distributed than the ones typically considered by philosophers. Therefore, contemporary dynamicist (...)
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • The sciences of the artificial.Herbert Alexander Simon - 1969 - [Cambridge,: M.I.T. Press.
    Continuing his exploration of the organization of complexity and the science of design, this new edition of Herbert Simon's classic work on artificial ...
    Download  
     
    Export citation  
     
    Bookmark   936 citations  
  • Making things happen: a theory of causal explanation.James F. Woodward - 2003 - New York: Oxford University Press.
    Woodward's long awaited book is an attempt to construct a comprehensive account of causation explanation that applies to a wide variety of causal and explanatory claims in different areas of science and everyday life. The book engages some of the relevant literature from other disciplines, as Woodward weaves together examples, counterexamples, criticisms, defenses, objections, and replies into a convincing defense of the core of his theory, which is that we can analyze causation by appeal to the notion of manipulation.
    Download  
     
    Export citation  
     
    Bookmark   1659 citations  
  • The dynamics of embodiment: A field theory of infant perseverative reaching.Esther Thelen, Gregor Schöner, Christian Scheier & Linda B. Smith - 2001 - Behavioral and Brain Sciences 24 (1):1-34.
    The overall goal of this target article is to demonstrate a mechanism for an embodied cognition. The particular vehicle is a much-studied, but still widely debated phenomenon seen in 7–12 month-old-infants. In Piaget's classic “A-not-B error,” infants who have successfully uncovered a toy at location “A” continue to reach to that location even after they watch the toy hidden in a nearby location “B.” Here, we question the traditional explanations of the error as an indicator of infants' concepts of objects (...)
    Download  
     
    Export citation  
     
    Bookmark   123 citations  
  • Explanation in dynamical cognitive science.Joel Walmsley - 2008 - Minds and Machines 18 (3):331-348.
    In this paper, I outline two strands of evidence for the conclusion that the dynamical approach to cognitive science both seeks and provides covering law explanations. Two of the most successful dynamical models—Kelso’s model of rhythmic finger movement and Thelen et al.’s model of infant perseverative reaching—can be seen to provide explanations which conform to the famous explanatory scheme first put forward by Hempel and Oppenheim. In addition, many prominent advocates of the dynamical approach also express the provision of this (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Multiple realizability and universality.Robert W. Batterman - 2000 - British Journal for the Philosophy of Science 51 (1):115-145.
    This paper concerns what Jerry Fodor calls a 'metaphysical mystery': How can there by macroregularities that are realized by wildly heterogeneous lower level mechanisms? But the answer to this question is not as mysterious as many, including Jaegwon Kim, Ned Block, and Jerry Fodor might think. The multiple realizability of the properties of the special sciences such as psychology is best understood as a kind of universality, where 'universality' is used in the technical sense one finds in the physics literature. (...)
    Download  
     
    Export citation  
     
    Bookmark   116 citations  
  • Two outbreaks of lawlessness in recent philosophy of biology.Elliott Sober - 1997 - Philosophy of Science 64 (4):467.
    John Beatty (1995) and Alexander Rosenberg (1994) have argued against the claim that there are laws in biology. Beatty's main reason is that evolution is a process full of contingency, but he also takes the existence of relative significance controversies in biology and the popularity of pluralistic approaches to a variety of evolutionary questions to be evidence for biology's lawlessness. Rosenberg's main argument appeals to the idea that biological properties supervene on large numbers of physical properties, but he also develops (...)
    Download  
     
    Export citation  
     
    Bookmark   67 citations  
  • (1 other version)Studies in the logic of explanation.Carl Gustav Hempel & Paul Oppenheim - 1948 - Philosophy of Science 15 (2):135-175.
    To explain the phenomena in the world of our experience, to answer the question “why?” rather than only the question “what?”, is one of the foremost objectives of all rational inquiry; and especially, scientific research in its various branches strives to go beyond a mere description of its subject matter by providing an explanation of the phenomena it investigates. While there is rather general agreement about this chief objective of science, there exists considerable difference of opinion as to the function (...)
    Download  
     
    Export citation  
     
    Bookmark   710 citations  
  • After the Philosophy of Mind: Replacing Scholasticism with Science.Tony Chemero & Michael Silberstein - 2008 - Philosophy of Science 75 (1):1-27.
    We provide a taxonomy of the two most important debates in the philosophy of the cognitive and neural sciences. The first debate is over methodological individualism: is the object of the cognitive and neural sciences the brain, the whole animal, or the animal--environment system? The second is over explanatory style: should explanation in cognitive and neural science be reductionist-mechanistic, inter-level mechanistic, or dynamical? After setting out the debates, we discuss the ways in which they are interconnected. Finally, we make some (...)
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  • Thinking about mechanisms.Peter Machamer, Lindley Darden & Carl F. Craver - 2000 - Philosophy of Science 67 (1):1-25.
    The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change.
    Download  
     
    Export citation  
     
    Bookmark   1343 citations  
  • When mechanistic models explain.Carl F. Craver - 2006 - Synthese 153 (3):355-376.
    Not all models are explanatory. Some models are data summaries. Some models sketch explanations but leave crucial details unspecified or hidden behind filler terms. Some models are used to conjecture a how-possibly explanation without regard to whether it is a how-actually explanation. I use the Hodgkin and Huxley model of the action potential to illustrate these ways that models can be useful without explaining. I then use the subsequent development of the explanation of the action potential to show what is (...)
    Download  
     
    Export citation  
     
    Bookmark   254 citations  
  • A dynamical systems perspective on agent-environment interaction.Randall D. Beer - 1995 - Artificial Intelligence 72 (1-2):173-215.
    Download  
     
    Export citation  
     
    Bookmark   127 citations  
  • Being There: Putting Brain, Body, and World Together Again.Andy Clark - 1981 - MIT Press.
    In treating cognition as problem solving, Andy Clark suggests, we may often abstract too far from the very body and world in which our brains evolved to guide...
    Download  
     
    Export citation  
     
    Bookmark   698 citations  
  • Representations and cognitive explanations: Assessing the dynamicist challenge in cognitive science.William Bechtel - 1998 - Cognitive Science 22 (3):295-317.
    Advocates of dynamical systems theory (DST) sometimes employ revolutionary rhetoric. In an attempt to clarify how DST models differ from others in cognitive science, I focus on two issues raised by DST: the role for representations in mental models and the conception of explanation invoked. Two features of representations are their role in standing-in for features external to the system and their format. DST advocates sometimes claim to have repudiated the need for stand-ins in DST models, but I argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   85 citations  
  • Anti-representationalism and the dynamical stance.Anthony Chemero - 2000 - Philosophy of Science 67 (4):625-647.
    Arguments in favor of anti-representationalism in cognitive science often suffer from a lack of attention to detail. The purpose of this paper is to fill in the gaps in these arguments, and in so doing show that at least one form of anti- representationalism is potentially viable. After giving a teleological definition of representation and applying it to a few models that have inspired anti- representationalist claims, I argue that anti-representationalism must be divided into two distinct theses, one ontological, one (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Functional analysis.Robert E. Cummins - 1975 - Journal of Philosophy 72 (November):741-64.
    Download  
     
    Export citation  
     
    Bookmark   862 citations  
  • Some Varieties of Non-Causal Explanation.James Woodward - 2018 - In Alexander Reutlinger & Juha Saatsi (eds.), Explanation Beyond Causation: Philosophical Perspectives on Non-Causal Explanations. Oxford, United Kingdom: Oxford University Press.
    This chapter explores the possibility of weakening the criteria for causal explanation in Making Things Happen to yield various forms of non-causal explanation. These include the following: retaining the idea that explanations must answer what if things had been different questions but dropping the requirement the answers to such questions must take the form of claims about what would happen under interventions. Retaining the w- question requirement but allowing generalizations that hold for mathematical or conceptual reasons to figure in explanations. (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Are More Details Better? On the Norms of Completeness for Mechanistic Explanations.Carl F. Craver & David M. Kaplan - 2020 - British Journal for the Philosophy of Science 71 (1):287-319.
    Completeness is an important but misunderstood norm of explanation. It has recently been argued that mechanistic accounts of scientific explanation are committed to the thesis that models are complete only if they describe everything about a mechanism and, as a corollary, that incomplete models are always improved by adding more details. If so, mechanistic accounts are at odds with the obvious and important role of abstraction in scientific modelling. We respond to this characterization of the mechanist’s views about abstraction and (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Mechanistic Levels, Reduction, and Emergence.Mark Povich & Carl F. Craver - 2017 - In Stuart Glennan & Phyllis McKay Illari (eds.), The Routledge Handbook of Mechanisms and Mechanical Philosophy. Routledge. pp. 185-97.
    We sketch the mechanistic approach to levels, contrast it with other senses of “level,” and explore some of its metaphysical implications. This perspective allows us to articulate what it means for things to be at different levels, to distinguish mechanistic levels from realization relations, and to describe the structure of multilevel explanations, the evidence by which they are evaluated, and the scientific unity that results from them. This approach is not intended to solve all metaphysical problems surrounding physicalism. Yet it (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)Studies in the Logic of Explanation.Carl Hempel & Paul Oppenheim - 1948 - Journal of Symbolic Logic 14 (2):133-133.
    Download  
     
    Export citation  
     
    Bookmark   532 citations  
  • Regularities and causality; generalizations and causal explanations.Jim Bogen - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):397-420.
    Machamer, Darden, and Craver argue that causal explanations explain effects by describing the operations of the mechanisms which produce them. One of this paper’s aims is to take advantage of neglected resources of Mechanism to rethink the traditional idea that actual or counterfactual natural regularities are essential to the distinction between causal and non-causal co-occurrences, and that generalizations describing natural regularities are essential components of causal explanations. I think that causal productivity and regularity are by no means the same thing, (...)
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • Explanation: a mechanist alternative.William Bechtel & Adele Abrahamsen - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):421-441.
    Explanations in the life sciences frequently involve presenting a model of the mechanism taken to be responsible for a given phenomenon. Such explanations depart in numerous ways from nomological explanations commonly presented in philosophy of science. This paper focuses on three sorts of differences. First, scientists who develop mechanistic explanations are not limited to linguistic representations and logical inference; they frequently employ diagrams to characterize mechanisms and simulations to reason about them. Thus, the epistemic resources for presenting mechanistic explanations are (...)
    Download  
     
    Export citation  
     
    Bookmark   559 citations  
  • Explanation beyond causation? New directions in the philosophy of scientific explanation.Alexander Reutlinger - 2017 - Philosophy Compass 12 (2):e12395.
    In this paper, I aim to provide access to the current debate on non-causal explanations in philosophy of science. I will first present examples of non-causal explanations in the sciences. Then, I will outline three alternative approaches to non-causal explanations – that is, causal reductionism, pluralism, and monism – and, corresponding to these three approaches, different strategies for distinguishing between causal and non-causal explanation. Finally, I will raise questions for future research on non-causal explanations.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Synergetics, an Introduction: Nonequilibrium Phase Transitions and SelfOrganization in Physics, Chemistry, and Biology.H. Haken - 1978 - Springer.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Minimal Model Explanations.Robert W. Batterman & Collin C. Rice - 2014 - Philosophy of Science 81 (3):349-376.
    This article discusses minimal model explanations, which we argue are distinct from various causal, mechanical, difference-making, and so on, strategies prominent in the philosophical literature. We contend that what accounts for the explanatory power of these models is not that they have certain features in common with real systems. Rather, the models are explanatory because of a story about why a class of systems will all display the same large-scale behavior because the details that distinguish them are irrelevant. This story (...)
    Download  
     
    Export citation  
     
    Bookmark   176 citations  
  • Discovering Complexity.William Bechtel, Robert C. Richardson & Scott A. Kleiner - 1996 - History and Philosophy of the Life Sciences 18 (3):363-382.
    Download  
     
    Export citation  
     
    Bookmark   147 citations  
  • It's about time: An overview of the dynamical approach to cognition.Timothy Van Gelder & Robert F. Port - 1995 - In Tim van Gelder & Robert Port (eds.), Mind As Motion: Explorations in the Dynamics of Cognition. MIT Press. pp. 43.
    Download  
     
    Export citation  
     
    Bookmark   124 citations  
  • Minimal models and canonical neural computations: the distinctness of computational explanation in neuroscience.M. Chirimuuta - 2014 - Synthese 191 (2):127-153.
    In a recent paper, Kaplan (Synthese 183:339–373, 2011) takes up the task of extending Craver’s (Explaining the brain, 2007) mechanistic account of explanation in neuroscience to the new territory of computational neuroscience. He presents the model to mechanism mapping (3M) criterion as a condition for a model’s explanatory adequacy. This mechanistic approach is intended to replace earlier accounts which posited a level of computational analysis conceived as distinct and autonomous from underlying mechanistic details. In this paper I discuss work in (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Moving Beyond Causes: Optimality Models and Scientific Explanation.Collin Rice - 2013 - Noûs 49 (3):589-615.
    A prominent approach to scientific explanation and modeling claims that for a model to provide an explanation it must accurately represent at least some of the actual causes in the event's causal history. In this paper, I argue that many optimality explanations present a serious challenge to this causal approach. I contend that many optimality models provide highly idealized equilibrium explanations that do not accurately represent the causes of their target system. Furthermore, in many contexts, it is in virtue of (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Explanation and description in computational neuroscience.David Michael Kaplan - 2011 - Synthese 183 (3):339-373.
    The central aim of this paper is to shed light on the nature of explanation in computational neuroscience. I argue that computational models in this domain possess explanatory force to the extent that they describe the mechanisms responsible for producing a given phenomenon—paralleling how other mechanistic models explain. Conceiving computational explanation as a species of mechanistic explanation affords an important distinction between computational models that play genuine explanatory roles and those that merely provide accurate descriptions or predictions of phenomena. It (...)
    Download  
     
    Export citation  
     
    Bookmark   106 citations  
  • The Explanatory Force of Dynamical and Mathematical Models in Neuroscience: A Mechanistic Perspective.David Michael Kaplan & Carl F. Craver - 2011 - Philosophy of Science 78 (4):601-627.
    We argue that dynamical and mathematical models in systems and cognitive neuro- science explain (rather than redescribe) a phenomenon only if there is a plausible mapping between elements in the model and elements in the mechanism for the phe- nomenon. We demonstrate how this model-to-mechanism-mapping constraint, when satisfied, endows a model with explanatory force with respect to the phenomenon to be explained. Several paradigmatic models including the Haken-Kelso-Bunz model of bimanual coordination and the difference-of-Gaussians model of visual receptive fields are (...)
    Download  
     
    Export citation  
     
    Bookmark   195 citations  
  • Dynamics: an introduction.Alec Norton - 1995 - In Tim van Gelder & Robert Port (eds.), Mind As Motion: Explorations in the Dynamics of Cognition. MIT Press. pp. 45--68.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A Dynamic Systems Approach to the Development of Cognition and Action.David Morris, E. Thelen & L. B. Smith - 1997 - International Studies in the Philosophy of Science 11 (2).
    Download  
     
    Export citation  
     
    Bookmark   519 citations  
  • (1 other version)Explaining the Brain.Carl F. Craver - 2007 - Oxford, GB: Oxford University Press.
    Carl F. Craver investigates what we are doing when we use neuroscience to explain what's going on in the brain. When does an explanation succeed and when does it fail? Craver offers explicit standards for successful explanation of the workings of the brain, on the basis of a systematic view about what neuroscientific explanations are.
    Download  
     
    Export citation  
     
    Bookmark   406 citations  
  • Models Don’t Decompose That Way: A Holistic View of Idealized Models.Collin Rice - 2019 - British Journal for the Philosophy of Science 70 (1):179-208.
    Many accounts of scientific modelling assume that models can be decomposed into the contributions made by their accurate and inaccurate parts. These accounts then argue that the inaccurate parts of the model can be justified by distorting only what is irrelevant. In this paper, I argue that this decompositional strategy requires three assumptions that are not typically met by our best scientific models. In response, I propose an alternative view in which idealized models are characterized as holistically distorted representations that (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment.Jerome R. Busemeyer & James T. Townsend - 1993 - Psychological Review 100 (3):432-459.
    Download  
     
    Export citation  
     
    Bookmark   209 citations  
  • Relating theories via renormalization.Leo P. Kadanoff - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (1):22-39.
    The renormalization method is specifically aimed at connecting theories describing physical processes at different length scales and thereby connecting different theories in the physical sciences.The renormalization method used today is the outgrowth of 150 years of scientific study of thermal physics and phase transitions. Different phases of matter show qualitatively different behaviors separated by abrupt phase transitions. These qualitative differences seem to be present in experimentally observed condensed-matter systems. However, the “extended singularity theorem” in statistical mechanics shows that sharp changes (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Information Processing and Dynamics in Minimally Cognitive Agents.Randall D. Beer & Paul L. Williams - 2015 - Cognitive Science 39 (1):1-38.
    There has been considerable debate in the literature about the relative merits of information processing versus dynamical approaches to understanding cognitive processes. In this article, we explore the relationship between these two styles of explanation using a model agent evolved to solve a relational categorization task. Specifically, we separately analyze the operation of this agent using the mathematical tools of information theory and dynamical systems theory. Information-theoretic analysis reveals how task-relevant information flows through the system to be combined into a (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Universality and RG Explanations.Robert W. Batterman - 2019 - Perspectives on Science 27 (1):26-47.
    In its broadest sense, "universality" is a technical term for something quite ordinary. It refers to the existence of patterns of behavior by physical systems that recur and repeat despite the fact that in some sense the situations in which these patterns recur and repeat are different. Rainbows, for example, always exhibit the same pattern of spacings and intensities of their bows despite the fact that the rain showers are different on each occasion. They are different because the shapes of (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Galton, reversion and the quincunx: The rise of statistical explanation.André Ariew, Yasha Rohwer & Collin Rice - 2017 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 66:63-72.
    Download  
     
    Export citation  
     
    Bookmark   13 citations