Switch to: References

Add citations

You must login to add citations.
  1. Integrating psychology and neuroscience: functional analyses as mechanism sketches.Gualtiero Piccinini & Carl Craver - 2011 - Synthese 183 (3):283-311.
    We sketch a framework for building a unified science of cognition. This unification is achieved by showing how functional analyses of cognitive capacities can be integrated with the multilevel mechanistic explanations of neural systems. The core idea is that functional analyses are sketches of mechanisms , in which some structural aspects of a mechanistic explanation are omitted. Once the missing aspects are filled in, a functional analysis turns into a full-blown mechanistic explanation. By this process, functional analyses are seamlessly integrated (...)
    Download  
     
    Export citation  
     
    Bookmark   209 citations  
  • Minimal Model Explanations.Robert W. Batterman & Collin C. Rice - 2014 - Philosophy of Science 81 (3):349-376.
    This article discusses minimal model explanations, which we argue are distinct from various causal, mechanical, difference-making, and so on, strategies prominent in the philosophical literature. We contend that what accounts for the explanatory power of these models is not that they have certain features in common with real systems. Rather, the models are explanatory because of a story about why a class of systems will all display the same large-scale behavior because the details that distinguish them are irrelevant. This story (...)
    Download  
     
    Export citation  
     
    Bookmark   181 citations  
  • Are More Details Better? On the Norms of Completeness for Mechanistic Explanations.Carl F. Craver & David M. Kaplan - 2020 - British Journal for the Philosophy of Science 71 (1):287-319.
    Completeness is an important but misunderstood norm of explanation. It has recently been argued that mechanistic accounts of scientific explanation are committed to the thesis that models are complete only if they describe everything about a mechanism and, as a corollary, that incomplete models are always improved by adding more details. If so, mechanistic accounts are at odds with the obvious and important role of abstraction in scientific modelling. We respond to this characterization of the mechanist’s views about abstraction and (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • The cognitive neuroscience revolution.Worth Boone & Gualtiero Piccinini - 2016 - Synthese 193 (5):1509-1534.
    We outline a framework of multilevel neurocognitive mechanisms that incorporates representation and computation. We argue that paradigmatic explanations in cognitive neuroscience fit this framework and thus that cognitive neuroscience constitutes a revolutionary break from traditional cognitive science. Whereas traditional cognitive scientific explanations were supposed to be distinct and autonomous from mechanistic explanations, neurocognitive explanations aim to be mechanistic through and through. Neurocognitive explanations aim to integrate computational and representational functions and structures across multiple levels of organization in order to explain (...)
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • First principles in the life sciences: the free-energy principle, organicism, and mechanism.Matteo Colombo & Cory Wright - 2021 - Synthese 198 (14):3463–3488.
    The free-energy principle states that all systems that minimize their free energy resist a tendency to physical disintegration. Originally proposed to account for perception, learning, and action, the free-energy principle has been applied to the evolution, development, morphology, anatomy and function of the brain, and has been called a postulate, an unfalsifiable principle, a natural law, and an imperative. While it might afford a theoretical foundation for understanding the relationship between environment, life, and mind, its epistemic status is unclear. Also (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Empiricism without Magic: Transformational Abstraction in Deep Convolutional Neural Networks.Cameron Buckner - 2018 - Synthese (12):1-34.
    In artificial intelligence, recent research has demonstrated the remarkable potential of Deep Convolutional Neural Networks (DCNNs), which seem to exceed state-of-the-art performance in new domains weekly, especially on the sorts of very difficult perceptual discrimination tasks that skeptics thought would remain beyond the reach of artificial intelligence. However, it has proven difficult to explain why DCNNs perform so well. In philosophy of mind, empiricists have long suggested that complex cognition is based on information derived from sensory experience, often appealing to (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Bayesian Cognitive Science, Unification, and Explanation.Stephan Hartmann & Matteo Colombo - 2017 - British Journal for the Philosophy of Science 68 (2).
    It is often claimed that the greatest value of the Bayesian framework in cognitive science consists in its unifying power. Several Bayesian cognitive scientists assume that unification is obviously linked to explanatory power. But this link is not obvious, as unification in science is a heterogeneous notion, which may have little to do with explanation. While a crucial feature of most adequate explanations in cognitive science is that they reveal aspects of the causal mechanism that produces the phenomenon to be (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Fiction As a Vehicle for Truth: Moving Beyond the Ontic Conception.Alisa Bokulich - 2016 - The Monist 99 (3):260-279.
    Despite widespread evidence that fictional models play an explanatory role in science, resistance remains to the idea that fictions can explain. A central source of this resistance is a particular view about what explanations are, namely, the ontic conception of explanation. According to the ontic conception, explanations just are the concrete entities in the world. I argue this conception is ultimately incoherent and that even a weaker version of the ontic conception fails. Fictional models can succeed in offering genuine explanations (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • From Wide Cognition to Mechanisms: A Silent Revolution.Marcin Miłkowski, Robert Clowes, Zuzanna Rucińska, Aleksandra Przegalińska, Tadeusz Zawidzki, Joel Krueger, Adam Gies, Marek McGann, Łukasz Afeltowicz, Witold Wachowski, Fredrik Stjernberg, Victor Loughlin & Mateusz Hohol - 2018 - Frontiers in Psychology 9.
    In this paper, we argue that several recent ‘wide’ perspectives on cognition (embodied, embedded, extended, enactive, and distributed) are only partially relevant to the study of cognition. While these wide accounts override traditional methodological individualism, the study of cognition has already progressed beyond these proposed perspectives towards building integrated explanations of the mechanisms involved, including not only internal submechanisms but also interactions with others, groups, cognitive artifacts, and their environment. The claim is substantiated with reference to recent developments in the (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Against Interpretability: a Critical Examination of the Interpretability Problem in Machine Learning.Maya Krishnan - 2020 - Philosophy and Technology 33 (3):487-502.
    The usefulness of machine learning algorithms has led to their widespread adoption prior to the development of a conceptual framework for making sense of them. One common response to this situation is to say that machine learning suffers from a “black box problem.” That is, machine learning algorithms are “opaque” to human users, failing to be “interpretable” or “explicable” in terms that would render categorization procedures “understandable.” The purpose of this paper is to challenge the widespread agreement about the existence (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Causal Concepts in Biology: How Pathways Differ from Mechanisms and Why It Matters.Lauren N. Ross - 2021 - British Journal for the Philosophy of Science 72 (1):131-158.
    In the last two decades few topics in philosophy of science have received as much attention as mechanistic explanation. A significant motivation for these accounts is that scientists frequently use the term “mechanism” in their explanations of biological phenomena. While scientists appeal to a variety of causal concepts in their explanations, many philosophers argue or assume that all of these concepts are well understood with the single notion of mechanism. This reveals a significant problem with mainstream mechanistic accounts– although philosophers (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Explanation and description in computational neuroscience.David Michael Kaplan - 2011 - Synthese 183 (3):339-373.
    The central aim of this paper is to shed light on the nature of explanation in computational neuroscience. I argue that computational models in this domain possess explanatory force to the extent that they describe the mechanisms responsible for producing a given phenomenon—paralleling how other mechanistic models explain. Conceiving computational explanation as a species of mechanistic explanation affords an important distinction between computational models that play genuine explanatory roles and those that merely provide accurate descriptions or predictions of phenomena. It (...)
    Download  
     
    Export citation  
     
    Bookmark   109 citations  
  • Moving Beyond Causes: Optimality Models and Scientific Explanation.Collin Rice - 2013 - Noûs 49 (3):589-615.
    A prominent approach to scientific explanation and modeling claims that for a model to provide an explanation it must accurately represent at least some of the actual causes in the event's causal history. In this paper, I argue that many optimality explanations present a serious challenge to this causal approach. I contend that many optimality models provide highly idealized equilibrium explanations that do not accurately represent the causes of their target system. Furthermore, in many contexts, it is in virtue of (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • II—James Woodward: Mechanistic Explanation: Its Scope and Limits.James Woodward - 2013 - Aristotelian Society Supplementary Volume 87 (1):39-65.
    This paper explores the question of whether all or most explanations in biology are, or ideally should be, ‘mechanistic’. I begin by providing an account of mechanistic explanation, making use of the interventionist ideas about causation I have developed elsewhere. This account emphasizes the way in which mechanistic explanations, at least in the biological sciences, integrate difference‐making and spatio‐temporal information, and exhibit what I call fine‐tunedness of organization. I also emphasize the role played by modularity conditions in mechanistic explanation. I (...)
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Minimal models and canonical neural computations: the distinctness of computational explanation in neuroscience.M. Chirimuuta - 2014 - Synthese 191 (2):127-153.
    In a recent paper, Kaplan (Synthese 183:339–373, 2011) takes up the task of extending Craver’s (Explaining the brain, 2007) mechanistic account of explanation in neuroscience to the new territory of computational neuroscience. He presents the model to mechanism mapping (3M) criterion as a condition for a model’s explanatory adequacy. This mechanistic approach is intended to replace earlier accounts which posited a level of computational analysis conceived as distinct and autonomous from underlying mechanistic details. In this paper I discuss work in (...)
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Models Don’t Decompose That Way: A Holistic View of Idealized Models.Collin Rice - 2019 - British Journal for the Philosophy of Science 70 (1):179-208.
    Many accounts of scientific modelling assume that models can be decomposed into the contributions made by their accurate and inaccurate parts. These accounts then argue that the inaccurate parts of the model can be justified by distorting only what is irrelevant. In this paper, I argue that this decompositional strategy requires three assumptions that are not typically met by our best scientific models. In response, I propose an alternative view in which idealized models are characterized as holistically distorted representations that (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Explanation in Computational Neuroscience: Causal and Non-causal.M. Chirimuuta - 2018 - British Journal for the Philosophy of Science 69 (3):849-880.
    This article examines three candidate cases of non-causal explanation in computational neuroscience. I argue that there are instances of efficient coding explanation that are strongly analogous to examples of non-causal explanation in physics and biology, as presented by Batterman, Woodward, and Lange. By integrating Lange’s and Woodward’s accounts, I offer a new way to elucidate the distinction between causal and non-causal explanation, and to address concerns about the explanatory sufficiency of non-mechanistic models in neuroscience. I also use this framework to (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Three kinds of new mechanism.Arnon Levy - 2013 - Biology and Philosophy 28 (1):99-114.
    I distinguish three theses associated with the new mechanistic philosophy – concerning causation, explanation and scientific methodology. Advocates of each thesis are identified and relationships among them are outlined. I then look at some recent work on natural selection and mechanisms. There, attention to different kinds of New Mechanism significantly affects of what is at stake.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Life, mind, agency: Why Markov blankets fail the test of evolution.Walter Veit & Heather Browning - 2022 - Behavioral and Brain Sciences 45:e214.
    There has been much criticism of the idea that Friston's free-energy principle can unite the life and mind sciences. Here, we argue that perhaps the greatest problem for the totalizing ambitions of its proponents is a failure to recognize the importance of evolutionary dynamics and to provide a convincing adaptive story relating free-energy minimization to organismal fitness.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What was Hodgkin and Huxley’s Achievement?Arnon Levy - 2013 - British Journal for the Philosophy of Science 65 (3):469-492.
    The Hodgkin–Huxley (HH) model of the action potential is a theoretical pillar of modern neurobiology. In a number of recent publications, Carl Craver ([2006], [2007], [2008]) has argued that the model is explanatorily deficient because it does not reveal enough about underlying molecular mechanisms. I offer an alternative picture of the HH model, according to which it deliberately abstracts from molecular specifics. By doing so, the model explains whole-cell behaviour as the product of a mass of underlying low-level events. The (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Getting over Atomism: Functional Decomposition in Complex Neural Systems.Daniel C. Burnston - 2021 - British Journal for the Philosophy of Science 72 (3):743-772.
    Functional decomposition is an important goal in the life sciences, and is central to mechanistic explanation and explanatory reduction. A growing literature in philosophy of science, however, has challenged decomposition-based notions of explanation. ‘Holists’ posit that complex systems exhibit context-sensitivity, dynamic interaction, and network dependence, and that these properties undermine decomposition. They then infer from the failure of decomposition to the failure of mechanistic explanation and reduction. I argue that complexity, so construed, is only incompatible with one notion of decomposition, (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Systems biology and the integration of mechanistic explanation and mathematical explanation.Ingo Brigandt - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4):477-492.
    The paper discusses how systems biology is working toward complex accounts that integrate explanation in terms of mechanisms and explanation by mathematical models—which some philosophers have viewed as rival models of explanation. Systems biology is an integrative approach, and it strongly relies on mathematical modeling. Philosophical accounts of mechanisms capture integrative in the sense of multilevel and multifield explanations, yet accounts of mechanistic explanation have failed to address how a mathematical model could contribute to such explanations. I discuss how mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Dynamical Models: An Alternative or Complement to Mechanistic Explanations?David M. Kaplan & William Bechtel - 2011 - Topics in Cognitive Science 3 (2):438-444.
    Abstract While agreeing that dynamical models play a major role in cognitive science, we reject Stepp, Chemero, and Turvey's contention that they constitute an alternative to mechanistic explanations. We review several problems dynamical models face as putative explanations when they are not grounded in mechanisms. Further, we argue that the opposition of dynamical models and mechanisms is a false one and that those dynamical models that characterize the operations of mechanisms overcome these problems. By briefly considering examples involving the generation (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Dynamical Models and Explanation in Neuroscience.Lauren N. Ross - 2015 - Philosophy of Science 82 (1):32-54.
    Kaplan and Craver claim that all explanations in neuroscience appeal to mechanisms. They extend this view to the use of mathematical models in neuroscience and propose a constraint such models must meet in order to be explanatory. I analyze a mathematical model used to provide explanations in dynamical systems neuroscience and indicate how this explanation cannot be accommodated by the mechanist framework. I argue that this explanation is well characterized by Batterman’s account of minimal model explanations and that it demonstrates (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Constraints on Localization and Decomposition as Explanatory Strategies in the Biological Sciences.Michael Silberstein & Anthony Chemero - 2013 - Philosophy of Science 80 (5):958-970.
    Several articles have recently appeared arguing that there really are no viable alternatives to mechanistic explanation in the biological sciences (Kaplan and Bechtel; Kaplan and Craver). We argue that mechanistic explanation is defined by localization and decomposition. We argue further that systems neuroscience contains explanations that violate both localization and decomposition. We conclude that the mechanistic model of explanation needs to either stretch to now include explanations wherein localization or decomposition fail or acknowledge that there are counterexamples to mechanistic explanation (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • From symbols to icons: the return of resemblance in the cognitive neuroscience revolution.Daniel Williams & Lincoln Colling - 2018 - Synthese 195 (5):1941-1967.
    We argue that one important aspect of the “cognitive neuroscience revolution” identified by Boone and Piccinini :1509–1534. doi: 10.1007/s11229-015-0783-4, 2015) is a dramatic shift away from thinking of cognitive representations as arbitrary symbols towards thinking of them as icons that replicate structural characteristics of their targets. We argue that this shift has been driven both “from below” and “from above”—that is, from a greater appreciation of what mechanistic explanation of information-processing systems involves, and from a greater appreciation of the problems (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Scientific practice as ecological-enactive co-construction.Guilherme Sanches de Oliveira, Thomas van Es & Inês Hipólito - 2023 - Synthese 202 (1):1-33.
    Philosophy of science has undergone a naturalistic turn, moving away from traditional idealized concerns with the logical structure of scientific theories and toward focusing on real-world scientific practice, especially in domains such as modeling and experimentation. As part of this shift, recent work has explored how the project of philosophically understanding science as a natural phenomenon can be enriched by drawing from different fields and disciplines, including niche construction theory in evolutionary biology, on the one hand, and ecological and enactive (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Diversifying the picture of explanations in biological sciences: ways of combining topology with mechanisms.Philippe Huneman - 2018 - Synthese 195 (1):115-146.
    Besides mechanistic explanations of phenomena, which have been seriously investigated in the last decade, biology and ecology also include explanations that pinpoint specific mathematical properties as explanatory of the explanandum under focus. Among these structural explanations, one finds topological explanations, and recent science pervasively relies on them. This reliance is especially due to the necessity to model large sets of data with no practical possibility to track the proper activities of all the numerous entities. The paper first defines topological explanations (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (1 other version)Discovering Patterns: On the Norms of Mechanistic Inquiry.Lena Kästner & Philipp Haueis - forthcoming - Erkenntnis 3:1-26.
    What kinds of norms constrain mechanistic discovery and explanation? In the mechanistic literature, the norms for good explanations are directly derived from answers to the metaphysical question of what explanations are. Prominent mechanistic accounts thus emphasize either ontic or epistemic norms. Still, mechanistic philosophers on both sides agree that there is no sharp distinction between the processes of discovery and explanation. Thus, it seems reasonable to expect that ontic and epistemic accounts of explanation will be accompanied by ontic and epistemic (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Multiple realizability.John Bickle - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   67 citations  
  • Explaining the behaviour of random ecological networks: the stability of the microbiome as a case of integrative pluralism.Roger Deulofeu, Javier Suárez & Alberto Pérez-Cervera - 2019 - Synthese 198 (3):2003-2025.
    Explaining the behaviour of ecosystems is one of the key challenges for the biological sciences. Since 2000, new-mechanicism has been the main model to account for the nature of scientific explanation in biology. The universality of the new-mechanist view in biology has been however put into question due to the existence of explanations that account for some biological phenomena in terms of their mathematical properties (mathematical explanations). Supporters of mathematical explanation have argued that the explanation of the behaviour of ecosystems (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Mechanisms in psychology: ripping nature at its seams.Catherine Stinson - 2016 - Synthese 193 (5).
    Recent extensions of mechanistic explanation into psychology suggest that cognitive models are only explanatory insofar as they map neatly onto, and serve as scaffolding for more detailed neural models. Filling in those neural details is what these accounts take the integration of cognitive psychology and neuroscience to mean, and they take this process to be seamless. Critics of this view have given up on cognitive models possibly explaining mechanistically in the course of arguing for cognitive models having explanatory value independent (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Mechanistic and topological explanations: an introduction.Daniel Kostić - 2018 - Synthese 195 (1).
    In the last 20 years or so, since the publication of a seminal paper by Watts and Strogatz :440–442, 1998), an interest in topological explanations has spread like a wild fire over many areas of science, e.g. ecology, evolutionary biology, medicine, and cognitive neuroscience. The topological approach is still very young by all standards, and even within special sciences it still doesn’t have a single methodological programme that is applicable across all areas of science. That is why this special issue (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Evolutionary Developmental Biology and the Limits of Philosophical Accounts of Mechanistic Explanation.Ingo Brigandt - 2015 - In P.-A. Braillard & C. Malaterre, Explanation in Biology: An Enquiry into the Diversity of Explanatory Patterns in the Life Sciences. Springer. pp. 135-173.
    Evolutionary developmental biology (evo-devo) is considered a ‘mechanistic science,’ in that it causally explains morphological evolution in terms of changes in developmental mechanisms. Evo-devo is also an interdisciplinary and integrative approach, as its explanations use contributions from many fields and pertain to different levels of organismal organization. Philosophical accounts of mechanistic explanation are currently highly prominent, and have been particularly able to capture the integrative nature of multifield and multilevel explanations. However, I argue that evo-devo demonstrates the need for a (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Searching for Noncausal Explanations in a Sea of Causes.Alisa Bokulich - 2018 - In Alexander Reutlinger & Juha Saatsi, Explanation Beyond Causation: Philosophical Perspectives on Non-Causal Explanations. Oxford, United Kingdom: Oxford University Press.
    In the spirit of explanatory pluralism, this chapter argues that causal and noncausal explanations of a phenomenon are compatible, each being useful for bringing out different sorts of insights. After reviewing a model-based account of scientific explanation, which can accommodate causal and noncausal explanations alike, an important core conception of noncausal explanation is identified. This noncausal form of model-based explanation is illustrated using the example of how Earth scientists in a subfield known as aeolian geomorphology are explaining the formation of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Data science and molecular biology: prediction and mechanistic explanation.Ezequiel López-Rubio & Emanuele Ratti - 2021 - Synthese 198 (4):3131-3156.
    In the last few years, biologists and computer scientists have claimed that the introduction of data science techniques in molecular biology has changed the characteristics and the aims of typical outputs (i.e. models) of such a discipline. In this paper we will critically examine this claim. First, we identify the received view on models and their aims in molecular biology. Models in molecular biology are mechanistic and explanatory. Next, we identify the scope and aims of data science (machine learning in (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Factive scientific understanding without accurate representation.Collin C. Rice - 2016 - Biology and Philosophy 31 (1):81-102.
    This paper analyzes two ways idealized biological models produce factive scientific understanding. I then argue that models can provide factive scientific understanding of a phenomenon without providing an accurate representation of the features of their real-world target system. My analysis of these cases also suggests that the debate over scientific realism needs to investigate the factive scientific understanding produced by scientists’ use of idealized models rather than the accuracy of scientific models themselves.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Cascade versus Mechanism: The Diversity of Causal Structure in Science.Lauren N. Ross - forthcoming - British Journal for the Philosophy of Science.
    According to mainstream philosophical views causal explanation in biology and neuroscience is mechanistic. As the term ‘mechanism’ gets regular use in these fields it is unsurprising that philosophers consider it important to scientific explanation. What is surprising is that they consider it the only causal term of importance. This paper provides an analysis of a new causal concept—it examines the cascade concept in science and the causal structure it refers to. I argue that this concept is importantly different from the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • One mechanism, many models: a distributed theory of mechanistic explanation.Eric Hochstein - 2016 - Synthese 193 (5):1387-1407.
    There have been recent disagreements in the philosophy of neuroscience regarding which sorts of scientific models provide mechanistic explanations, and which do not. These disagreements often hinge on two commonly adopted, but conflicting, ways of understanding mechanistic explanations: what I call the “representation-as” account, and the “representation-of” account. In this paper, I argue that neither account does justice to neuroscientific practice. In their place, I offer a new alternative that can defuse some of these disagreements. I argue that individual models (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The ontology of organisms: Mechanistic modules or patterned processes?Christopher J. Austin - 2016 - Biology and Philosophy 31 (5):639-662.
    Though the realm of biology has long been under the philosophical rule of the mechanistic magisterium, recent years have seen a surprisingly steady rise in the usurping prowess of process ontology. According to its proponents, theoretical advances in the contemporary science of evo-devo have afforded that ontology a particularly powerful claim to the throne: in that increasingly empirically confirmed discipline, emergently autonomous, higher-order entities are the reigning explanantia. If we are to accept the election of evo-devo as our best conceptualisation (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Understanding realism.Collin Rice - 2019 - Synthese 198 (5):4097-4121.
    Catherine Elgin has recently argued that a nonfactive conception of understanding is required to accommodate the epistemic successes of science that make essential use of idealizations and models. In this paper, I argue that the fact that our best scientific models and theories are pervasively inaccurate representations can be made compatible with a more nuanced form of scientific realism that I call Understanding Realism. According to this view, science aims at (and often achieves) factive scientific understanding of natural phenomena. I (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Mechanistic and topological explanations in medicine: the case of medical genetics and network medicine.Marie Darrason - 2018 - Synthese 195 (1):147-173.
    Medical explanations have often been thought on the model of biological ones and are frequently defined as mechanistic explanations of a biological dysfunction. In this paper, I argue that topological explanations, which have been described in ecology or in cognitive sciences, can also be found in medicine and I discuss the relationships between mechanistic and topological explanations in medicine, through the example of network medicine and medical genetics. Network medicine is a recent discipline that relies on the analysis of various (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On Logical Inference over Brains, Behaviour, and Artificial Neural Networks.Olivia Guest & Andrea E. Martin - 2023 - Computational Brain and Behavior 6:213–227.
    In the cognitive, computational, and neuro-sciences, practitioners often reason about what computational models represent or learn, as well as what algorithm is instantiated. The putative goal of such reasoning is to generalize claims about the model in question, to claims about the mind and brain, and the neurocognitive capacities of those systems. Such inference is often based on a model’s performance on a task, and whether that performance approximates human behavior or brain activity. Here we demonstrate how such argumentation problematizes (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Non-mechanistic Option: Defending Dynamical Explanations.Russell Meyer - 2018 - British Journal for the Philosophy of Science 71 (3):959-985.
    This article demonstrates that non-mechanistic, dynamical explanations are a viable approach to explanation in the special sciences. The claim that dynamical models can be explanatory without reference to mechanisms has previously been met with three lines of criticism from mechanists: the causal relevance concern, the genuine laws concern, and the charge of predictivism. I argue, however, that these mechanist criticisms fail to defeat non-mechanistic, dynamical explanation. Using the examples of Haken et al.’s model of bimanual coordination, and Thelen et al.’s (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)Re-reconciling the Epistemic and Ontic Views of Explanation.Benjamin Sheredos - 2016 - Erkenntnis 81 (5):919-949.
    Recent attempts to reconcile the ontic and epistemic approaches to explanation propose that our best explanations simply fulfill epistemic and ontic norms simultaneously. I aim to upset this armistice. Epistemic norms of attaining general and systematic explanations are, I argue, autonomous of ontic norms: they cannot be fulfilled simultaneously or in simple conjunction with ontic norms, and plausibly have priority over them. One result is that central arguments put forth by ontic theorists against epistemic theorists are revealed as not only (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The role of the environment in computational explanations.Jens Harbecke & Oron Shagrir - 2019 - European Journal for Philosophy of Science 9 (3):1-19.
    The mechanistic view of computation contends that computational explanations are mechanistic explanations. Mechanists, however, disagree about the precise role that the environment – or the so-called “contextual level” – plays for computational explanations. We advance here two claims: Contextual factors essentially determine the computational identity of a computing system ; this means that specifying the “intrinsic” mechanism is not sufficient to fix the computational identity of the system. It is not necessary to specify the causal-mechanistic interaction between the system and (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Mechanistic Explanation in Psychology.Mark Povich - forthcoming - In Hank Stam & Huib Looren De Jong, The SAGE Handbook of Theoretical Psychology. (Eds.) Hank Stam and Huib Looren de Jong. Sage.
    Philosophers of psychology debate, among other things, which psychological models, if any, are (or provide) mechanistic explanations. This should seem a little strange given that there is rough consensus on the following two claims: 1) a mechanism is an organized collection of entities and activities that produces, underlies, or maintains a phenomenon, and 2) a mechanistic explanation describes, represents, or provides information about the mechanism producing, underlying, or maintaining the phenomenon to be explained (i.e. the explanandum phenomenon) (Bechtel and Abrahamsen (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Prediction versus understanding in computationally enhanced neuroscience.Mazviita Chirimuuta - 2020 - Synthese 199 (1-2):767-790.
    The use of machine learning instead of traditional models in neuroscience raises significant questions about the epistemic benefits of the newer methods. I draw on the literature on model intelligibility in the philosophy of science to offer some benchmarks for the interpretability of artificial neural networks used as a predictive tool in neuroscience. Following two case studies on the use of ANN’s to model motor cortex and the visual system, I argue that the benefit of providing the scientist with understanding (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Market crashes as critical phenomena? Explanation, idealization, and universality in econophysics.Jennifer Jhun, Patricia Palacios & James Owen Weatherall - 2018 - Synthese 195 (10):4477-4505.
    We study the Johansen–Ledoit–Sornette model of financial market crashes :219–255, 2000). On our view, the JLS model is a curious case from the perspective of the recent philosophy of science literature, as it is naturally construed as a “minimal model” in the sense of Batterman and Rice :349–376, 2014) that nonetheless provides a causal explanation of market crashes, in the sense of Woodward’s interventionist account of causation.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Heuristics, Descriptions, and the Scope of Mechanistic Explanation.Carlos Zednik - 2015 - In Pierre-Alain Braillard & Christophe Malaterre, Explanation in Biology. An Enquiry into the Diversity of Explanatory Patterns in the Life Sciences. Dordrecht: Springer. pp. 295-318.
    The philosophical conception of mechanistic explanation is grounded on a limited number of canonical examples. These examples provide an overly narrow view of contemporary scientific practice, because they do not reflect the extent to which the heuristic strategies and descriptive practices that contribute to mechanistic explanation have evolved beyond the well-known methods of decomposition, localization, and pictorial representation. Recent examples from evolutionary robotics and network approaches to biology and neuroscience demonstrate the increasingly important role played by computer simulations and mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations