Switch to: Citations

Add references

You must login to add references.
  1. The negation of the singular cardinal hypothesis from o(K)=K++.Moti Gitik - 1989 - Annals of Pure and Applied Logic 43 (3):209-234.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Perfect-set forcing for uncountable cardinals.Akihiro Kanamori - 1980 - Annals of Mathematical Logic 19 (1-2):97-114.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • The number of normal measures.Sy-David Friedman & Menachem Magidor - 2009 - Journal of Symbolic Logic 74 (3):1069-1080.
    There have been numerous results showing that a measurable cardinal κ can carry exactly α normal measures in a model of GCH, where a is a cardinal at most κ⁺⁺. Starting with just one measurable cardinal, we have [9] (for α = 1), [10] (for α = κ⁺⁺, the maximum possible) and [1] (for α = κ⁺, after collapsing κ⁺⁺) . In addition, under stronger large cardinal hypotheses, one can handle the remaining cases: [12] (starting with a measurable cardinal of (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Perfect trees and elementary embeddings.Sy-David Friedman & Katherine Thompson - 2008 - Journal of Symbolic Logic 73 (3):906-918.
    An important technique in large cardinal set theory is that of extending an elementary embedding j: M → N between inner models to an elementary embedding j*: M[G] → N[G*] between generic extensions of them. This technique is crucial both in the study of large cardinal preservation and of internal consistency. In easy cases, such as when forcing to make the GCH hold while preserving a measurable cardinal (via a reverse Easton iteration of α-Cohen forcing for successor cardinals α), the (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Fusion and large cardinal preservation.Sy-David Friedman, Radek Honzik & Lyubomyr Zdomskyy - 2013 - Annals of Pure and Applied Logic 164 (12):1247-1273.
    In this paper we introduce some fusion properties of forcing notions which guarantee that an iteration with supports of size ⩽κ not only does not collapse κ+ but also preserves the strength of κ. This provides a general theory covering the known cases of tree iterations which preserve large cardinals [3], Friedman and Halilović [5], Friedman and Honzik [6], Friedman and Magidor [8], Friedman and Zdomskyy [10], Honzik [12]).
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Uncountable superperfect forcing and minimality.Elizabeth Theta Brown & Marcia J. Groszek - 2006 - Annals of Pure and Applied Logic 144 (1-3):73-82.
    Uncountable superperfect forcing is tree forcing on regular uncountable cardinals κ with κ<κ=κ, using trees in which the heights of nodes that split along any branch in the tree form a club set, and such that any node in the tree with more than one immediate extension has measure-one-many extensions, where the measure is relative to some κ-complete, nonprincipal normal filter F. This forcing adds a generic of minimal degree if and only if F is κ-saturated.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Combinatorics on ideals and forcing.Serge Grigorieff - 1971 - Annals of Mathematical Logic 3 (4):363.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Grigorieff Forcing on Uncountable Cardinals Does Not Add a Generic of Minimal Degree.Brooke M. Andersen & Marcia J. Groszek - 2009 - Notre Dame Journal of Formal Logic 50 (2):195-200.
    Grigorieff showed that forcing to add a subset of ω using partial functions with suitably chosen domains can add a generic real of minimal degree. We show that forcing with partial functions to add a subset of an uncountable κ without adding a real never adds a generic of minimal degree. This is in contrast to forcing using branching conditions, as shown by Brown and Groszek.
    Download  
     
    Export citation  
     
    Bookmark   1 citation