Switch to: Citations

Add references

You must login to add references.
  1. Classification Theory and the Number of Nonisomorphic Models.S. Shelah - 1982 - Journal of Symbolic Logic 47 (3):694-696.
    Download  
     
    Export citation  
     
    Bookmark   206 citations  
  • Minimale Gruppen.Joachim Reineke - 1975 - Mathematical Logic Quarterly 21 (1):357-359.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Model theory for infinitary logic.H. Jerome Keisler - 1971 - Amsterdam,: North-Holland Pub. Co..
    Provability, Computability and Reflection.
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • Categoricity and U-rank in excellent classes.Olivier Lessmann - 2003 - Journal of Symbolic Logic 68 (4):1317-1336.
    Let K be the class of atomic models of a countable first order theory. We prove that if K is excellent and categorical in some uncountable cardinal, then each model is prime and minimal over the basis of a definable pregeometry given by a quasiminimal set. This implies that K is categorical in all uncountable cardinals. We also introduce a U-rank to measure the complexity of complete types over models. We prove that the U-rank has the usual additivity properties, that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Almost orthogonal regular types.Ehud Hrushovski - 1989 - Annals of Pure and Applied Logic 45 (2):139-155.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Strong splitting in stable homogeneous models.Tapani Hyttinen & Saharon Shelah - 2000 - Annals of Pure and Applied Logic 103 (1-3):201-228.
    In this paper we study elementary submodels of a stable homogeneous structure. We improve the independence relation defined in Hyttinen 167–182). We apply this to prove a structure theorem. We also show that dop and sdop are essentially equivalent, where the negation of dop is the property we use in our structure theorem and sdop implies nonstructure, see Hyttinen.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • A rank for the class of elementary submodels of a superstable homogeneous model.Tapani Hyttinen & Olivier Lessmann - 2002 - Journal of Symbolic Logic 67 (4):1469-1482.
    We study the class of elementary submodels of a large superstable homogeneous model. We introduce a rank which is bounded in the superstable case, and use it to define a dependence relation which shares many (but not all) of the properties of forking in the first order case. The main difference is that we do not have extension over all sets. We also present an example of Shelah showing that extension over all sets may not hold for any dependence relation (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Finite diagrams stable in power.Saharon Shelah - 1970 - Annals of Mathematical Logic 2 (1):69-118.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Ranks and pregeometries in finite diagrams.Olivier Lessmann - 2000 - Annals of Pure and Applied Logic 106 (1-3):49-83.
    The study of classes of models of a finite diagram was initiated by S. Shelah in 1969. A diagram D is a set of types over the empty set, and the class of models of the diagram D consists of the models of T which omit all the types not in D. In this work, we introduce a natural dependence relation on the subsets of the models for the 0-stable case which share many of the formal properties of forking. This (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Finitely generated submodels of an uncountably categorical homogeneous structure.Tapani Hyttinen - 2004 - Mathematical Logic Quarterly 50 (1):77.
    We generalize the result of non-finite axiomatizability of totally categorical first-order theories from elementary model theory to homogeneous model theory. In particular, we lift the theory of envelopes to homogeneous model theory and develope theory of imaginaries in the case of ω-stable homogeneous classes of finite U-rank.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Finiteness of U-rank implies simplicity in homogeneous structures.Tapani Hyttinen - 2003 - Mathematical Logic Quarterly 49 (6):576.
    A superstable homogeneous structure is said to be simple if every complete type over any set A has a free extension over any B ⊇ A. In this paper we give a characterization for this property in terms of U-rank. As a corollary we get that if the structure has finite U-rank, then it is simple.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Shelah's stability spectrum and homogeneity spectrum in finite diagrams.Rami Grossberg & Olivier Lessmann - 2002 - Archive for Mathematical Logic 41 (1):1-31.
    We present Saharon Shelah's Stability Spectrum and Homogeneity Spectrum theorems, as well as the equivalence between the order property and instability in the framework of Finite Diagrams. Finite Diagrams is a context which generalizes the first order case. Localized versions of these theorems are presented. Our presentation is based on several papers; the point of view is contemporary and some of the proofs are new. The treatment of local stability in Finite Diagrams is new.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Unidimensional theories are superstable.Katsuya Eda - 1990 - Annals of Pure and Applied Logic 50 (2):117-137.
    A first order theory T of power λ is called unidimensional if any twoλ+-saturated models of T of the same cardinality are isomorphic. We prove here that such theories are superstable, solving a problem of Shelah. The proof involves an existence theorem and a definability theorem for definable groups in stable theories, and an analysis of their relation to regular types.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Unidimensional theories are superstable.Ehud Hrushovski - 1990 - Annals of Pure and Applied Logic 50 (2):117-138.
    A first order theory T of power λ is called unidimensional if any twoλ+-saturated models of T of the same cardinality are isomorphic. We prove here that such theories are superstable, solving a problem of Shelah. The proof involves an existence theorem and a definability theorem for definable groups in stable theories, and an analysis of their relation to regular types.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • The classification of excellent classes.R. Grossberg & B. Hart - 1989 - Journal of Symbolic Logic 54 (4):1359-1381.
    Download  
     
    Export citation  
     
    Bookmark   5 citations