Switch to: Citations

Add references

You must login to add references.
  1. ‘Chasing’ the diagram—the use of visualizations in algebraic reasoning.Silvia de Toffoli - 2017 - Review of Symbolic Logic 10 (1):158-186.
    The aim of this article is to investigate the roles of commutative diagrams (CDs) in a specific mathematical domain, and to unveil the reasons underlying their effectiveness as a mathematical notation; this will be done through a case study. It will be shown that CDs do not depict spatial relations, but represent mathematical structures. CDs will be interpreted as a hybrid notation that goes beyond the traditional bipartition of mathematical representations into diagrammatic and linguistic. It will be argued that one (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Beauty Is Not Simplicity: An Analysis of Mathematicians' Proof Appraisals.Matthew Inglis & Andrew Aberdein - 2015 - Philosophia Mathematica 23 (1):87-109.
    What do mathematicians mean when they use terms such as ‘deep’, ‘elegant’, and ‘beautiful’? By applying empirical methods developed by social psychologists, we demonstrate that mathematicians' appraisals of proofs vary on four dimensions: aesthetics, intricacy, utility, and precision. We pay particular attention to mathematical beauty and show that, contrary to the classical view, beauty and simplicity are almost entirely unrelated in mathematics.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Why a diagram is (sometimes) worth 10, 000 word.Jill H. Larkin & Herbert A. Simon - 1987 - Cognitive Science 11 (1):65-99.
    Download  
     
    Export citation  
     
    Bookmark   97 citations  
  • The Euclidean Diagram.Kenneth Manders - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press. pp. 80--133.
    This chapter gives a detailed study of diagram-based reasoning in Euclidean plane geometry (Books I, III), as well as an exploration how to characterise a geometric practice. First, an account is given of diagram attribution: basic geometrical claims are classified as exact (equalities, proportionalities) or co-exact (containments, contiguities); exact claims may only be inferred from prior entries in the demonstration text, but co-exact claims may be asserted based on what is seen in the diagram. Diagram control by constructions is necessary (...)
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • Forms and Roles of Diagrams in Knot Theory.Silvia De Toffoli & Valeria Giardino - 2014 - Erkenntnis 79 (4):829-842.
    The aim of this article is to explain why knot diagrams are an effective notation in topology. Their cognitive features and epistemic roles will be assessed. First, it will be argued that different interpretations of a figure give rise to different diagrams and as a consequence various levels of representation for knots will be identified. Second, it will be shown that knot diagrams are dynamic by pointing at the moves which are commonly applied to them. For this reason, experts must (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Mathematical symbols as epistemic actions.Johan De Smedt & Helen De Cruz - 2013 - Synthese 190 (1):3-19.
    Recent experimental evidence from developmental psychology and cognitive neuroscience indicates that humans are equipped with unlearned elementary mathematical skills. However, formal mathematics has properties that cannot be reduced to these elementary cognitive capacities. The question then arises how human beings cognitively deal with more advanced mathematical ideas. This paper draws on the extended mind thesis to suggest that mathematical symbols enable us to delegate some mathematical operations to the external environment. In this view, mathematical symbols are not only used to (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Visual Thinking in Mathematics: An Epistemological Study.Marcus Giaquinto - 2007 - Oxford, England: Oxford University Press.
    Marcus Giaquinto presents an investigation into the different kinds of visual thinking involved in mathematical thought, drawing on work in cognitive psychology, philosophy, and mathematics. He argues that mental images and physical diagrams are rarely just superfluous aids: they are often a means of discovery, understanding, and even proof.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Diagrams in mathematics: history and philosophy.John Mumma & Marco Panza - 2012 - Synthese 186 (1):1-5.
    Diagrams are ubiquitous in mathematics. From the most elementary class to the most advanced seminar, in both introductory textbooks and professional journals, diagrams are present, to introduce concepts, increase understanding, and prove results. They thus fulfill a variety of important roles in mathematical practice. Long overlooked by philosophers focused on foundational and ontological issues, these roles have come to receive attention in the past two decades, a trend in line with the growing philosophical interest in actual mathematical practice.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the Infinite.David Hilbert - 1926 - Mathematische Annalen 95:161-190.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Extended mathematical cognition: external representations with non-derived content.Karina Vold & Dirk Schlimm - 2020 - Synthese 197 (9):3757-3777.
    Vehicle externalism maintains that the vehicles of our mental representations can be located outside of the head, that is, they need not be instantiated by neurons located inside the brain of the cogniser. But some disagree, insisting that ‘non-derived’, or ‘original’, content is the mark of the cognitive and that only biologically instantiated representational vehicles can have non-derived content, while the contents of all extra-neural representational vehicles are derived and thus lie outside the scope of the cognitive. In this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Diagrams and proofs in analysis.Jessica Carter - 2010 - International Studies in the Philosophy of Science 24 (1):1 – 14.
    This article discusses the role of diagrams in mathematical reasoning in the light of a case study in analysis. In the example presented certain combinatorial expressions were first found by using diagrams. In the published proofs the pictures were replaced by reasoning about permutation groups. This article argues that, even though the diagrams are not present in the published papers, they still play a role in the formulation of the proofs. It is shown that they play a role in concept (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Mathematics has a front and a back.Reuben Hersh - 1991 - Synthese 88 (2):127 - 133.
    It is explained that, in the sense of the sociologist Erving Goffman, mathematics has a front and a back. Four pervasive myths about mathematics are stated. Acceptance of these myths is related to whether one is located in the front or the back.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Why a Diagram is (Sometimes) Worth Ten Thousand Words.Jill H. Larkin & Herbert A. Simon - 1987 - Cognitive Science 11 (1):65-100.
    Download  
     
    Export citation  
     
    Bookmark   175 citations  
  • Egg-Forms and Measure-Bodies: Different Mathematical Practices in the Early History of the Modern Theory of Convexity.Tinne Hoff Kjeldsen - 2009 - Science in Context 22 (1):85-113.
    ArgumentTwo simultaneous episodes in late nineteenth-century mathematical research, one by Karl Hermann Brunn and another by Hermann Minkowski, have been described as the origin of the theory of convex bodies. This article aims to understand and explain how and why the concept of such bodies emerged in these two trajectories of mathematical research; and why Minkowski's – and not Brunn's – strand of thought led to the development of a theory of convexity. Concrete pieces of Brunn's and Minkowski's mathematical work (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Material representations in mathematical research practice.Mikkel W. Johansen & Morten Misfeldt - 2020 - Synthese 197 (9):3721-3741.
    Mathematicians’ use of external representations, such as symbols and diagrams, constitutes an important focal point in current philosophical attempts to understand mathematical practice. In this paper, we add to this understanding by presenting and analyzing how research mathematicians use and interact with external representations. The empirical basis of the article consists of a qualitative interview study we conducted with active research mathematicians. In our analysis of the empirical material, we primarily used the empirically based frameworks provided by distributed cognition and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Visualization in Logic and Mathematics.Paolo Mancosu - 2005 - In Paolo Mancosu, Klaus Frovin Jørgensen & S. A. Pedersen (eds.), Visualization, Explanation and Reasoning Styles in Mathematics. Springer. pp. 13-26.
    In the last two decades there has been renewed interest in visualization in logic and mathematics. Visualization is usually understood in different ways but for the purposes of this article I will take a rather broad conception of visualization to include both visualization by means of mental images as well as visualizations by means of computer generated images or images drawn on paper, e.g. diagrams etc. These different types of visualization can differ substantially but I am interested in offering a (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations