Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Sahlqvist Formulas Unleashed in Polyadic Modal Languages.Valentin Goranko & Dimiter Vakarelov - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 221-240.
    We propose a generalization of Sahlqvist formulas to polyadic modal languages by representing such languages in a combinatorial PDL style and thus, in particular, developing what we believe to be the right syntactic approach to Sahlqvist formulas at all. The class of polyadic Sahlqvist formulas PSF defined here expands essentially the so far known one. We prove first-order definability and canonicity for the class PSF.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Elementary Canonical Formulae: A Survey on Syntactic, Algorithmic, and Modeltheoretic Aspects.W. Conradie, V. Goranko & D. Vakarelov - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 17-51.
    In terms of validity in Kripke frames, a modal formula expresses a universal monadic second-order condition. Those modal formulae which are equivalent to first-order conditions are called elementary. Modal formulae which have a certain persistence property which implies their validity in all canonical frames of modal logics axiomatized with them, and therefore their completeness, are called canonical. This is a survey of a recent and ongoing study of the class of elementary and canonical modal formulae. We summarize main ideas and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Sahlqvist Formulas Unleashed in Polyadic Modal Languages.Valentin Goranko & Dimiter Vakarelov - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 221-240.
    We propose a generalization of Sahlqvist formulae to polyadic modal languages by representing modal polyadic languages in a combinatorial style and thus, in particular, developing what we believe to be the right approach to Sahlqvist formulae at all. The class of polyadic Sahlqvist formulae PSF defined here expands essentially the so far known one. We prove first-order definability and canonicity for the class PSF.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Elementary canonical formulae: extending Sahlqvist’s theorem.Valentin Goranko & Dimiter Vakarelov - 2006 - Annals of Pure and Applied Logic 141 (1):180-217.
    We generalize and extend the class of Sahlqvist formulae in arbitrary polyadic modal languages, to the class of so called inductive formulae. To introduce them we use a representation of modal polyadic languages in a combinatorial style and thus, in particular, develop what we believe to be a better syntactic approach to elementary canonical formulae altogether. By generalizing the method of minimal valuations à la Sahlqvist–van Benthem and the topological approach of Sambin and Vaccaro we prove that all inductive formulae (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Hybrid Formulas and Elementarily Generated Modal Logics.Ian Hodkinson - 2006 - Notre Dame Journal of Formal Logic 47 (4):443-478.
    We characterize the modal logics of elementary classes of Kripke frames as precisely those modal logics that are axiomatized by modal axioms synthesized in a certain effective way from "quasi-positive" sentences of hybrid logic. These are pure positive hybrid sentences with arbitrary existential and relativized universal quantification over nominals. The proof has three steps. The first step is to use the known result that the modal logic of any elementary class of Kripke frames is also the modal logic of the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Elementary Canonical Formulae: A Survey on Syntactic, Algorithmic, and Modeltheoretic Aspects.W. Conradie, V. Goranko & D. Vakarelov - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 17-51.
    In terms of validity in Kripke frames, a modal formula expresses a universal monadic second-order condition. Those modal formulae which are equivalent to first-order conditions are called \emph{elementary}. Modal formulae which have a certain persistence property which implies their validity in all canonical frames of modal logics axiomatized with them, and therefore their completeness, are called \emph{canonical}. This is a survey of a recent and ongoing study of the class of elementary and canonical modal formulae. We summarize main ideas and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)On axiomatisting products of Kripke frames, part II.Agi Kurucz - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 219-230.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)The Truth About Algorithmic Problems in Correspondence Theory.Alexander Chagrov & Lilia Chagrova - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 121-138.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)On axiomatisting products of Kripke frames, part II.Agi Kurucz - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 219-230.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Modal Logic: Graph. Darst.Patrick Blackburn, Maarten de Rijke & Yde Venema - 2001 - New York: Cambridge University Press. Edited by Maarten de Rijke & Yde Venema.
    This modern, advanced textbook reviews modal logic, a field which caught the attention of computer scientists in the late 1970's.
    Download  
     
    Export citation  
     
    Bookmark   295 citations  
  • (1 other version)The Truth About Algorithmic Problems in Correspondence Theory.Alexander Chagrov & Lilia Chagrova - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 121-138.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Many-dimensional modal logics: theory and applications.Dov M. Gabbay (ed.) - 2003 - Boston: Elsevier North Holland.
    Modal logics, originally conceived in philosophy, have recently found many applications in computer science, artificial intelligence, the foundations of mathematics, linguistics and other disciplines. Celebrated for their good computational behaviour, modal logics are used as effective formalisms for talking about time, space, knowledge, beliefs, actions, obligations, provability, etc. However, the nice computational properties can drastically change if we combine some of these formalisms into a many-dimensional system, say, to reason about knowledge bases developing in time or moving objects. To study (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • On axiomatising products of Kripke frames.Agnes Kurucz - 2000 - Journal of Symbolic Logic 65 (2):923-945.
    It is shown that the many-dimensional modal logic K n , determined by products of n-many Kripke frames, is not finitely axiomatisable in the n-modal language, for any $n > 2$ . On the other hand, K n is determined by a class of frames satisfying a single first-order sentence.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Every world can see a Sahlqvist world.Philippe Balbiani, I. Shapirovsky & V. Shshtman - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 69-85.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Modal Definability in Languages with a Finite Number of Propositional Variables and a New Extension of the Sahlqvist's Class.Dimiter Vakarelov - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 499-518.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Tools and techniques in modal logic.Marcus Kracht - 1999 - New York: Elsevier.
    This book treats modal logic as a theory, with several subtheories, such as completeness theory, correspondence theory, duality theory and transfer theory and is intended as a course in modal logic for students who have had prior contact with modal logic and who wish to study it more deeply. It presupposes training in mathematical or logic. Very little specific knowledge is presupposed, most results which are needed are proved in this book.
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • (1 other version)Modal Definability in Languages with a Finite Number of Propositional Variables and a New Extension of the Sahlqvist's Class.Dimiter Vakarelov - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 499-518.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Every world can see a Sahlqvist world.Philippe Balbiani, I. Shapirovsky & V. Shshtman - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 69-85.
    Download  
     
    Export citation  
     
    Bookmark   6 citations