Switch to: Citations

Add references

You must login to add references.
  1. Hindman's theorem: An ultrafilter argument in second order arithmetic.Henry Towsner - 2011 - Journal of Symbolic Logic 76 (1):353 - 360.
    Hindman's Theorem is a prototypical example of a combinatorial theorem with a proof that uses the topology of the ultrafilters. We show how the methods of this proof, including topological arguments about ultrafilters, can be translated into second order arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Hindman’s theorem, ultrafilters, and reverse mathematics.Jeffry L. Hirst - 2004 - Journal of Symbolic Logic 69 (1):65-72.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Über eine bisher noch nicht benützte erweiterung Des finiten standpunktes.Von Kurt Gödel - 1958 - Dialectica 12 (3‐4):280-287.
    ZusammenfassungP. Bernays hat darauf hingewiesen, dass man, um die Widerspruchs freiheit der klassischen Zahlentheorie zu beweisen, den Hilbertschen flniter Standpunkt dadurch erweitern muss, dass man neben den auf Symbole sich beziehenden kombinatorischen Begriffen gewisse abstrakte Begriffe zulässt, Die abstrakten Begriffe, die bisher für diesen Zweck verwendet wurden, sinc die der konstruktiven Ordinalzahltheorie und die der intuitionistischer. Logik. Es wird gezeigt, dass man statt deesen den Begriff einer berechenbaren Funktion endlichen einfachen Typs über den natürlichen Zahler benutzen kann, wobei keine anderen (...)
    Download  
     
    Export citation  
     
    Bookmark   162 citations  
  • On the no-counterexample interpretation.Ulrich Kohlenbach - 1999 - Journal of Symbolic Logic 64 (4):1491-1511.
    In [15], [16] G. Kreisel introduced the no-counterexample interpretation (n.c.i.) of Peano arithmetic. In particular he proved, using a complicated ε-substitution method (due to W. Ackermann), that for every theorem A (A prenex) of first-order Peano arithmetic PA one can find ordinal recursive functionals Φ A of order type 0 which realize the Herbrand normal form A H of A. Subsequently more perspicuous proofs of this fact via functional interpretation (combined with normalization) and cut-elimination were found. These proofs however do (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Elimination of Skolem functions for monotone formulas in analysis.Ulrich Kohlenbach - 1998 - Archive for Mathematical Logic 37 (5-6):363-390.
    In this paper a new method, elimination of Skolem functions for monotone formulas, is developed which makes it possible to determine precisely the arithmetical strength of instances of various non-constructive function existence principles. This is achieved by reducing the use of such instances in a given proof to instances of certain arithmetical principles. Our framework are systems ${\cal T}^{\omega} :={\rm G}_n{\rm A}^{\omega} +{\rm AC}$ -qf $+\Delta$ , where (G $_n$ A $^{\omega})_{n \in {\Bbb N}}$ is a hierarchy of (weak) subsystems (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Nonstandard arithmetic and reverse mathematics.H. Jerome Keisler - 2006 - Bulletin of Symbolic Logic 12 (1):100-125.
    We show that each of the five basic theories of second order arithmetic that play a central role in reverse mathematics has a natural counterpart in the language of nonstandard arithmetic. In the earlier paper [3] we introduced saturation principles in nonstandard arithmetic which are equivalent in strength to strong choice axioms in second order arithmetic. This paper studies principles which are equivalent in strength to weaker theories in second order arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • An Effective Conservation Result for Nonstandard Arithmetic.Erik Palmgren - 2000 - Mathematical Logic Quarterly 46 (1):17-24.
    We prove that a nonstandard extension of arithmetic is effectively conservative over Peano arithmetic by using an internal version of a definable ultrapower. By the same method we show that a certain extension of the nonstandard theory with a saturation principle has the same proof-theoretic strength as second order arithmetic, where comprehension is restricted to arithmetical formulas.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A functional interpretation for nonstandard arithmetic.Benno van den Berg, Eyvind Briseid & Pavol Safarik - 2012 - Annals of Pure and Applied Logic 163 (12):1962-1994.
    We introduce constructive and classical systems for nonstandard arithmetic and show how variants of the functional interpretations due to Gödel and Shoenfield can be used to rewrite proofs performed in these systems into standard ones. These functional interpretations show in particular that our nonstandard systems are conservative extensions of E-HAω and E-PAω, strengthening earlier results by Moerdijk and Palmgren, and Avigad and Helzner. We will also indicate how our rewriting algorithm can be used for term extraction purposes. To conclude the (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes.Kurt Gödel - 1958 - Dialectica 12 (3):280.
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • An effective proof that open sets are Ramsey.Jeremy Avigad - 1998 - Archive for Mathematical Logic 37 (4):235-240.
    Solovay has shown that if $\cal{O}$ is an open subset of $P(\omega)$ with code $S$ and no infinite set avoids $\cal{O}$ , then there is an infinite set hyperarithmetic in $S$ that lands in $\cal{O}$ . We provide a direct proof of this theorem that is easily formalizable in $ATR_0$.
    Download  
     
    Export citation  
     
    Bookmark   8 citations