Switch to: Citations

Add references

You must login to add references.
  1. Substantivalist and Relationalist Approaches to Spacetime.Oliver Pooley - 2013 - In Robert Batterman (ed.), The Oxford Handbook of Philosophy of Physics. Oxford University Press USA.
    Substantivalists believe that spacetime and its parts are fundamental constituents of reality. Relationalists deny this, claiming that spacetime enjoys only a derivative existence. I begin by describing how the Galilean symmetries of Newtonian physics tell against both Newton's brand of substantivalism and the most obvious relationalist alternative. I then review the obvious substantivalist response to the problem, which is to ditch substantival space for substantival spacetime. The resulting position has many affinities with what are arguably the most natural interpretations of (...)
    Download  
     
    Export citation  
     
    Bookmark   113 citations  
  • Physical relativity: Space–time structure from a dynamical perspective.Harvey Brown - 2005 - Philosophy 82 (321):498-503.
    Download  
     
    Export citation  
     
    Bookmark   231 citations  
  • Minkowski space-time: A glorious non-entity.Harvey R. Brown & Oliver Pooley - 2006 - In Dennis Geert Bernardus Johan Dieks (ed.), Ontology of Spacetime. Boston: Elsevier. pp. 67--89.
    It is argued that Minkowski space-time cannot serve as the deep structure within a ``constructive'' version of the special theory of relativity, contrary to widespread opinion in the philosophical community.
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • Two miracles of general relativity.James Read, Harvey R. Brown & Dennis Lehmkuhl - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 64:14-25.
    We approach the physics of \emph{minimal coupling} in general relativity, demonstrating that in certain circumstances this leads to violations of the \emph{strong equivalence principle}, which states that, in general relativity, the dynamical laws of special relativity can be recovered at a point. We then assess the consequences of this result for the \emph{dynamical perspective on relativity}, finding that potential difficulties presented by such apparent violations of the strong equivalence principle can be overcome. Next, we draw upon our discussion of the (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • On Einstein Algebras and Relativistic Spacetimes.Sarita Rosenstock, Thomas William Barrett & James Owen Weatherall - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):309-316.
    In this paper, we examine the relationship between general relativity and the theory of Einstein algebras. We show that according to a formal criterion for theoretical equivalence recently proposed by Halvorson and Weatherall, the two are equivalent theories.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Why Constructive Relativity Fails.John D. Norton - 2008 - British Journal for the Philosophy of Science 59 (4):821-834.
    Constructivists, such as Harvey Brown, urge that the geometries of Newtonian and special relativistic spacetimes result from the properties of matter. Whatever this may mean, it commits constructivists to the claim that these spacetime geometries can be inferred from the properties of matter without recourse to spatiotemporal presumptions or with few of them. I argue that the construction project only succeeds if constructivists antecedently presume the essential commitments of a realist conception of spacetime. These commitments can be avoided only by (...)
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • The dynamical approach to spin-2 gravity.Kian Salimkhani - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:29-45.
    This paper engages with the following closely related questions that have recently received some attention in the literature: what is the status of the equivalence principle in general relativity?; how does the metric field obtain its property of being able to act as a metric?; and is the metric of GR derivative on the dynamics of the matter fields? The paper attempts to complement these debates by studying the spin-2 approach to gravity. In particular, the paper argues that three lessons (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The regularity account of relational spacetime.Nick Huggett - 2006 - Mind 115 (457):41--73.
    A version of relationism that takes spatiotemporal structures—spatial geometry and a standard of inertia—to supervene on the history of relations between bodies is described and defended. The account is used to explain how the relationist should construe models of Newtonian mechanics in which absolute acceleration manifestly does not supervene on the relations; Ptolemaic and Copernican models for example. The account introduces a new way in which a Lewis-style ‘best system’ might capture regularities in a broadly Humean world; a defence is (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • A new approach to the relational‐substantival debate.Jill North - 2018 - Oxford Studies in Metaphysics 11:3-43.
    We should see the debate over the existence of spacetime as a debate about the fundamentality of spatiotemporal structure to the physical world. This is a non-traditional conception of the debate, which captures the spirit of the traditional one. At the same time, it clarifies the point of contention between opposing views and offsets worries that the dispute is stagnant or non-substantive. It also unearths a novel argument for substantivalism, given current physics. Even so, that conclusion can be overridden by (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The Structure of Causal Sets.Christian Wüthrich - 2012 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 43 (2):223-241.
    More often than not, recently popular structuralist interpretations of physical theories leave the central concept of a structure insufficiently precisified. The incipient causal sets approach to quantum gravity offers a paradigmatic case of a physical theory predestined to be interpreted in structuralist terms. It is shown how employing structuralism lends itself to a natural interpretation of the physical meaning of causal set theory. Conversely, the conceptually exceptionally clear case of causal sets is used as a foil to illustrate how a (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Minkowski spacetime and Lorentz invariance: The cart and the horse or two sides of a single coin.Pablo Acuña - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 55:1-12.
    Michel Janssen and Harvey Brown have driven a prominent recent debate concerning the direction of an alleged arrow of explanation between Minkowski spacetime and Lorentz invariance of dynamical laws in special relativity. In this article, I critically assess this controversy with the aim of clarifying the explanatory foundations of the theory. First, I show that two assumptions shared by the parties—that the dispute is independent of issues concerning spacetime ontology, and that there is an urgent need for a constructive interpretation (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • The origins of the spacetime Metric: Bell’s Lorentzian Pedagogy and its significance in general relativity.Harvey R. Brown & Oliver Pooley - 2001 - In Craig Callender & Nick Huggett (eds.), Physics Meets Philosophy at the Planck Scale: Contemporary Theories in Quantum Gravity. Cambridge University Press. pp. 256--72.
    The purpose of this paper is to evaluate the `Lorentzian Pedagogy' defended by J.S. Bell in his essay ``How to teach special relativity'', and to explore its consistency with Einstein's thinking from 1905 to 1952. Some remarks are also made in this context on Weyl's philosophy of relativity and his 1918 gauge theory. Finally, it is argued that the Lorentzian pedagogy---which stresses the important connection between kinematics and dynamics---clarifies the role of rods and clocks in general relativity.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • (1 other version)Geometry and motion.Gordon Belot - 2000 - British Journal for the Philosophy of Science 51 (4):561--95.
    I will discuss only one of the several entwined strands of the philosophy of space and time, the question of the relation between the nature of motion and the geometrical structure of the world.1 This topic has many of the virtues of the best philosophy of science. It is of long-standing philosophical interest and has a rich history of connections to problems of physics. It has loomed large in discussions of space and time among contemporary philosophers of science. Furthermore, there (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Reconsidering a Scientific Revolution: The Case of Einstein 6ersus Lorentz.Michel Janssen - unknown
    The relationship between Albert Einstein’s special theory of relativity and Hendrik A. Lorentz’s ether theory is best understood in terms of competing interpretations of Lorentz invariance. In the 1890s, Lorentz proved and exploited the Lorentz invariance of Maxwell’s equations, the laws governing electromagnetic fields in the ether, with what he called the theorem of corresponding states. To account for the negative results of attempts to detect the earth’s motion through the ether, Lorentz, in effect, had to assume that the laws (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Rings, holes and substantivalism: On the program of Leibniz algebras.Robert Rynasiewicz - 1992 - Philosophy of Science 59 (4):572-589.
    In a number of publications, John Earman has advocated a tertium quid to the usual dichotomy between substantivalism and relationism concerning the nature of spacetime. The idea is that the structure common to the members of an equivalence class of substantival models is captured by a Leibniz algebra which can then be taken to directly characterize the intrinsic reality only indirectly represented by the substantival models. An alleged virtue of this is that, while a substantival interpretation of spacetime theories falls (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Regularity Relationalism and the Constructivist Project.Syman Stevens - 2020 - British Journal for the Philosophy of Science 71 (1):353-372.
    It has recently been argued that Harvey Brown and Oliver Pooley’s ‘dynamical approach’ to special relativity should be understood as what might be called an ontologically and ideologically relationalist approach to Minkowski geometry, according to which Minkowski geometrical structure supervenes upon the symmetries of the best-systems dynamical laws for a material world with primitive topological or differentiable structure. Fleshing out the details of some such primitive structure, and a conception of laws according to which Minkowski geometry could so supervene, has (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • An Algebraic Approach to Physical Fields.Lu Chen & Tobias Fritz - 2021 - Studies in History and Philosophy of Science Part A 89 (C):188-201.
    According to the algebraic approach to spacetime, a thoroughgoing dynamicism, physical fields exist without an underlying manifold. This view is usually implemented by postulating an algebraic structure (e.g., commutative ring) of scalar-valued functions, which can be interpreted as representing a scalar field, and deriving other structures from it. In this work, we point out that this leads to the unjustified primacy of an undetermined scalar field. Instead, we propose to consider algebraic structures in which all (and only) physical fields are (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Algebraic Fields and the Dynamical Approach to Physical Geometry.Tushar Menon - 2019 - Philosophy of Science 86 (5):1273-1283.
    Brown and Pooley’s ‘dynamical approach’ to physical theories asserts, in opposition to the orthodox position on physical geometry, that facts about physical geometry are grounded in, or explained by, facts about dynamical fields, not the other way round. John Norton has claimed that the proponent of the dynamical approach is illicitly committed to spatiotemporal presumptions in ‘constructing’ space-time from facts about dynamical symmetries. In this article, I present an abstract, algebraic formulation of field theories and demonstrate that the proponent of (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Two dogmas of dynamicism.James Owen Weatherall - 2020 - Synthese 199 (S2):253-275.
    I critically discuss two dogmas of the “dynamical approach” to spacetime in general relativity, as advanced by Harvey Brown [Physical Relativity Oxford:Oxford University Press] and collaborators. The first dogma is that positing a “spacetime geometry” has no implications for the behavior of matter. The second dogma is that postulating the “Strong Equivalence Principle” suffices to ensure that matter is “adapted” to spacetime geometry. I conclude by discussing “spacetime functionalism”. The discussion is presented in reaction to and sympathy with recent work (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Regularity Relationalism and the Constructivist Project.Syman Stevens - 2017 - British Journal for the Philosophy of Science:axx037.
    ABSTRACT It has recently been argued that Harvey Brown and Oliver Pooley’s ‘dynamical approach’ to special relativity should be understood as what might be called an ontologically and ideologically relationalist approach to Minkowski geometry, according to which Minkowski geometrical structure supervenes upon the symmetries of the best-systems dynamical laws for a material world with primitive topological or differentiable structure. Fleshing out the details of some such primitive structure, and a conception of laws according to which Minkowski geometry could so supervene, (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Super-Humeanism: A starving ontology.Dustin Lazarovici - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 64:79-86.
    The paper provides a critical discussion of the Super-Humean view of spacetime and the “minimalist ontology” in terms of Leibnizian relations and primitive matter points, recently developed by Esfeld et al. It investigates, in particular, the empirical adequacy of the proposed metaphysics, arguing that Super-Humeanism cannot provide a plausible account of space and time without committing to bona fide geometric structure in the fundamental relations. Against this backdrop, I propose a moderate version of Super-Humeanism and discuss its possible application to (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The metaphysics of emergent spacetime theories.Niels C. M. Martens - 2019 - Philosophy Compass 14 (7):e12596.
    The debate concerning the ontological status of spacetime is standardly construed as a dilemma between substantivalism and relationalism. I argue that a trilemma is more appropriate, emergent spacetime theories being the third category. Traditional philosophical arguments do not distinguish between emergent spacetime and substantivalism. It is arguments from physics that suggest giving up substantivalism in favour of emergent spacetime theories. The remaining new dilemma is between emergent spacetime and relationalism. I provide a list of questions, which one should consider when (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On the role of special relativity in general relativity.Harvey R. Brown - 1997 - International Studies in the Philosophy of Science 11 (1):67 – 81.
    The existence of a definite tangent space structure (metric with Lorentzian signature) in the general theory of relativity is the consequence of a fundamental assumption concerning the local validity of special relativity. There is then at the heart of Einstein's theory of gravity an absolute element which depends essentially on a common feature of all the non-gravitational interactions in the world, and which has nothing to do with space-time curvature. Tentative implications of this point for the significance of the vacuum (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • (1 other version)Geometry and Motion.Gordon Belot - 2003 - In Peter Clark & Katherine Hawley (eds.), Philosophy of science today. New York: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Missing the point in noncommutative geometry.Nick Huggett, Tushar Menon & Fedele Lizzi - unknown - Synthese 199 (1-2):4695-4728.
    Noncommutative geometries generalize standard smooth geometries, parametrizing the noncommutativity of dimensions with a fundamental quantity with the dimensions of area. The question arises then of whether the concept of a region smaller than the scale—and ultimately the concept of a point—makes sense in such a theory. We argue that it does not, in two interrelated ways. In the context of Connes’ spectral triple approach, we show that arbitrarily small regions are not definable in the formal sense. While in the scalar (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Einstein algebras and the hole argument.Jonathan Bain - 2003 - Philosophy of Science 70 (5):1073-1085.
    Einstein algebras have been suggested (Earman 1989) and rejected (Rynasiewicz 1992) as a way to avoid the hole argument against spacetime substantivalism. In this article, I debate their merits and faults. In particular, I suggest that a gauge‐invariant interpretation of Einstein algebras that avoids the hole argument can be associated with one approach to quantizing gravity, and, for this reason, is at least as well motivated as sophisticated substantivalist and relationalist interpretations of the standard tensor formalism.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Geometry, Fields, and Spacetime.James Binkoski - 2019 - British Journal for the Philosophy of Science 70 (4):1097-1117.
    I present an argument against a relational theory of spacetime that regards spacetime as a ‘structural quality of the field’. The argument takes the form of a trilemma. To make the argument, I focus on relativistic worlds in which there exist just two fields, an electromagnetic field and a gravitational field. Then there are three options: either spacetime is a structural quality of each field separately, both fields together, or one field but not the other. I argue that the first (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Coordinates, observables and symmetry in relativity.Hans Westman & Sebastiano Sonego - unknown
    We investigate the interplay and connections between symmetry properties of equations, the interpretation of coordinates, the construction of observables, and the existence of physical relativity principles in spacetime theories. Using the refined notion of an event as a "point-coincidence" between scalar fields that completely characterise a spacetime model, we also propose a natural generalisation of the relational local observables that does not require the existence of four everywhere invertible scalar fields. The collection of all point-coincidences forms in generic situations a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations