Switch to: Citations

Add references

You must login to add references.
  1. Part and whole in quantum mechanics.Tim Maudlin - 1998 - In Elena Castellani (ed.), Interpreting Bodies: Classical and Quantum Objects in Modern Physics. Princeton University Press. pp. 46--60.
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • The Problem of Hidden Variables in Quantum Mechanics.Simon Kochen & E. P. Specker - 1967 - Journal of Mathematics and Mechanics 17:59--87.
    Download  
     
    Export citation  
     
    Bookmark   496 citations  
  • On the structure of quantal proposition systems.Jeffrey Bub - 1994 - Foundations of Physics 24 (9):1261-1279.
    I define sublaltices of quantum propositions that can be taken as having determinate (but perhaps unknown) truth values for a given quantum state, in the sense that sufficiently many two-valued maps satisfying a Boolean homomorphism condition exist on each determinate sublattice to generate a Kolmogorov probability space for the probabilities defined by the slate. I show that these sublattices are maximal, subject to certain constraints, from which it follows easily that they are unique. I discuss the relevance of this result (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Unified dynamics for microscopic and macroscopic systems.GianCarlo Ghirardi, Alberto Rimini & Tullio Weber - 1986 - Physical Review D 34 (D):470–491.
    Download  
     
    Export citation  
     
    Bookmark   400 citations  
  • Truth and probability.Frank Ramsey - 2010 - In Antony Eagle (ed.), Philosophy of Probability: Contemporary Readings. New York: Routledge. pp. 52-94.
    Download  
     
    Export citation  
     
    Bookmark   586 citations  
  • Quantum mechanics and haecceities.Paul Teller - 1998 - In Elena Castellani (ed.), Interpreting Bodies: Classical and Quantum Objects in Modern Physics. Princeton University Press. pp. 114--141.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Self‐Induced Decoherence and the Classical Limit of Quantum Mechanics.Mario Castagnino & Olimpia Lombardi - 2005 - Philosophy of Science 72 (5):764-776.
    In this paper we argue that the emergence of the classical world from the underlying quantum reality involves two elements: self-induced decoherence and macroscopicity. Self-induced decoherence does not require the openness of the system and its interaction with the environment: a single closed system can decohere when its Hamiltonian has continuous spectrum. We show that, if the system is macroscopic enough, after self-induced decoherence it can be described as an ensemble of classical distributions weighted by their corresponding probabilities. We also (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Particle labels and the theory of indistinguishable particles in quantum mechanics.Michael Redhead & Paul Teller - 1992 - British Journal for the Philosophy of Science 43 (2):201-218.
    We extend the work of French and Redhead [1988] further examining the relation of quantum statistics to the assumption that quantum entities have the sort of identity generally assumed for physical objects, more specifically an identity which makes them susceptible to being thought of as conceptually individuatable and labelable even though they cannot be experimentally distinguished. We also further examine the relation of such hypothesized identity of quantum entities to the Principle of the Identity of Indiscernibles. We conclude that although (...)
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • (1 other version)The propensity interpretation of probability.Karl R. Popper - 1959 - British Journal for the Philosophy of Science 10 (37):25-42.
    Download  
     
    Export citation  
     
    Bookmark   240 citations  
  • Non-integrability and mixing in quantum systems: On the way to quantum chaos.Mario Castagnino & Olimpia Lombardi - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (3):482-513.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the withering away of physical objects.Steven French - 1998 - In Elena Castellani (ed.), Interpreting Bodies: Classical and Quantum Objects in Modern Physics. Princeton University Press. pp. 93--113.
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • Probability in modal interpretations of quantum mechanics.Dennis Dieks - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):292-310.
    Modal interpretations have the ambition to construe quantum mechanics as an objective, man-independent description of physical reality. Their second leading idea is probabilism: quantum mechanics does not completely fix physical reality but yields probabilities. In working out these ideas an important motif is to stay close to the standard formalism of quantum mechanics and to refrain from introducing new structure by hand. In this paper we explain how this programme can be made concrete. In particular, we show that the Born (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Quantum mechanics without the projection postulate.Jeffrey Bub - 1992 - Foundations of Physics 22 (5):737-754.
    I show that the quantum state ω can be interpreted as defining a probability measure on a subalgebra of the algebra of projection operators that is not fixed (as in classical statistical mechanics) but changes with ω and appropriate boundary conditions, hence with the dynamics of the theory. This subalgebra, while not embeddable into a Boolean algebra, will always admit two-valued homomorphisms, which correspond to the different possible ways in which a set of “determinate” quantities (selected by ω and the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • On a quasi-set theory.Décio Krause - 1992 - Notre Dame Journal of Formal Logic 33 (3):402--11.
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • A Perspectival Version of the Modal Interpretation of Quantum Mechanics and the Origin of Macroscopic Behavior.Gyula Bene & Dennis Dieks - 2001 - Foundations of Physics 32 (5):645-671.
    We study the process of observation (measurement), within the framework of a “perspectival” (“relational,” “relative state”) version of the modal interpretation of quantum mechanics. We show that if we assume certain features of discreteness and determinism in the operation of the measuring device (which could be a part of the observer's nerve system), this gives rise to classical characteristics of the observed properties, in the first place to spatial localization. We investigate to what extent semi-classical behavior of the object system (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Quantum mechanical interaction-free measurements.Avshalom C. Elitzur & Lev Vaidman - 1993 - Foundations of Physics 23 (7):987-997.
    A novel manifestation of nonlocality of quantum mechanics is presented. It is shown that it is possible to ascertain the existence of an object in a given region of space without interacting with it. The method might have practical applications for delicate quantum experiments.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • (1 other version)On the calculus of relations.Alfred Tarski - 1941 - Journal of Symbolic Logic 6 (3):73-89.
    The logical theory which is called thecalculus of (binary) relations, and which will constitute the subject of this paper, has had a strange and rather capricious line of historical development. Although some scattered remarks regarding the concept of relations are to be found already in the writings of medieval logicians, it is only within the last hundred years that this topic has become the subject of systematic investigation. The first beginnings of the contemporary theory of relations are to be found (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • A laplacean formal semantics for single-case propensities.Ronald N. Giere - 1976 - Journal of Philosophical Logic 5 (3):321 - 353.
    Even those generally skeptical of propensity interpretations of probability must now grant the following two points. First, the above single-case propensity interpretation meets recognized formal conditions for being a genuine interpretation of probability. Second, this interpretation is not logically reducible to a hypothetical relative frequency interpretation, nor is it only vacuously different from such an interpretation.The main objection to this propensity interpretation must be not that it is too vague or vacuous, but that it is metaphysically too extravagant. It asserts (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • (1 other version)Wanted Dead or Alive: Two Attempts to Solve Schrodinger's Paradox.David Albert & Barry Loewer - 1990 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1990:277-285.
    We discuss two recent attempts two solve Schrodinger's cat paradox. One is the modal interpretation developed by Kochen, Healey, Dieks, and van Fraassen. It allows for an observable which pertains to a system to possess a value even when the system is not in an eigenstate of that observable. The other is a recent theory of the collapse of the wave function due to Ghirardi, Rimini, and Weber. It posits a dynamics which has the effect of collapsing the state of (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • (1 other version)Schrödinger Logics.Newton C. A. da Costa & Décio Krause - 1994 - Studia Logica 53 (4):533-550.
    Schrödinger logics are logical systems in which the principle of identity is not true in general. The intuitive motivation for these logics is both Erwin Schrödinger's thesis that identity lacks sense for elementary particles of modern physics, and the way which physicists deal with this concept; normally, they understand identity as meaning indistinguishability . Observing that these concepts are equivalent in classical logic and mathematics, which underly the usual physical theories, we present a higher-order logical system in which these concepts (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)Self-induced decoherence: a new approach.Mario Castagnino & Olimpia Lombardi - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (1):73-107.
    According to Zurek, decoherence is a process resulting from the interaction between a quantum system and its environment; this process singles out a preferred set of states, usually called “pointer basis”, that determines which observables will receive definite values. This means that decoherence leads to a sort of selection which precludes all except a small subset of the states in the Hilbert space of the system from behaving in a classical manner: environment-induced-superselection—einselection —is a consequence of the process of decoherence. (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • A general conceptual framework for decoherence in closed and open systems.Mario Castagnino, Roberto Laura & Olimpia Lombardi - 2007 - Philosophy of Science 74 (5):968-980.
    In this paper we argue that the formalisms for decoherence originally devised to deal just with closed or open systems can be subsumed under a general conceptual framework, in such a way that they cooperate in the understanding of the same physical phenomenon. This new perspective dissolves certain conceptual difficulties of the einselection program but, at the same time, shows that the openness of the quantum system is not the essential ingredient for decoherence. †To contact the authors, please write to: (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Self-induced decoherence: a new approach.Mario Castagnino & Olimpia Lombardi - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (1):73-107.
    According to Zurek, decoherence is a process resulting from the interaction between a quantum system and its environment; this process singles out a preferred set of states, usually called “pointer basis”, that determines which observables will receive definite values. This means that decoherence leads to a sort of selection which precludes all except a small subset of the states in the Hilbert space of the system from behaving in a classical manner: environment-induced-superselection—einselection —is a consequence of the process of decoherence. (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Unique transition probabilities in the modal interpretation.Pieter E. Vermaas - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (2):133-159.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Dynamics for Modal Interpretations.Guido Bacciagaluppi & Michael Dickson - 1999 - Foundations of Physics 29 (8):1165-1201.
    An outstanding problem in so-called modal interpretations of quantum mechanics has been the specification of a dynamics for the properties introduced in such interpretations. We develop a general framework (in the context of the theory of stochastic processes) for specifying a dynamics for interpretations in this class, focusing on the modal interpretation by Vermaas and Dieks. This framework admits many empirically equivalent dynamics. We give some examples, and discuss some of the properties of one of them. This approach is applicable (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • The Propensity Interpretation of the Calculus of Probability, and the Quantum Theory.Karl R. Popper - 1957 - In Stefan Körner (ed.), Observation and Interpretation: A Symposium of Philosophers and Physicists. Butterworth. pp. 65--70.
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • An Intensional Schrödinger Logic.Newton C. A. da Costa & Décio Krause - 1997 - Notre Dame Journal of Formal Logic 38 (2):179-194.
    We investigate the higher-order modal logic , which is a variant of the system presented in our previous work. A semantics for that system, founded on the theory of quasi sets, is outlined. We show how such a semantics, motivated by the very intuitive base of Schrödinger logics, provides an alternative way to formalize some intensional concepts and features which have been used in recent discussions on the logical foundations of quantum mechanics; for example, that some terms like 'electron' have (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Interpretation and identity in quantum theory.Jeremy Butterfield - 1993 - Studies in History and Philosophy of Science Part A 24 (3):443--76.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • The modal interpretation of quantum mechanics and its generalization to density operators.Pieter E. Vermaas & Dennis Dieks - 1995 - Foundations of Physics 25 (1):145-158.
    We generalize the modal interpretation of quantum mechanics so that it may be applied to composite systems represented by arbitrary density operators. We discuss the interpretation these density operators receive and relate this to the discussion about the interpretation of proper and improper mixtures in the standard interpretation.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • On the Paradoxical Aspects of New Quantum Experiments.Lev Vaidman - 1994 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1994:211 - 217.
    Two recently proposed quantum experiments are analyzed. The first allows to find an object without "touching" it. The second allows to teleport quantum states, transmitting a very small amount of information. It is shown that in the standard approach these experiments are in conflict with the intuitive notions of causality and locality. It is argued that the situation is less paradoxical in the framework of the many-worlds interpretation of quantum theory.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Quantum Selections, Propensities and the Problem of Measurement.Mauricio Suárez - 2004 - British Journal for the Philosophy of Science 55 (2):219-255.
    This paper expands on, and provides a qualified defence of, Arthur Fine's selective interactions solution to the measurement problem. Fine's approach must be understood against the background of the insolubility proof of the quantum measurement. I first defend the proof as an appropriate formal representation of the quantum measurement problem. The nature of selective interactions, and more generally selections, is then clarified, and three arguments in their favour are offered. First, selections provide the only known solution to the measurement problem (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • (1 other version)Actualism.Christopher Menzel - 2014 - In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphysics Research Lab.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Modal interpretations, decoherence and measurements.Guido Bacciagaluppi & Meir Hemmo - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (3):239-277.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • The Einstein-podolsky-Rosen paradox.Bas C. Fraassen - 1974 - Synthese 29 (1-4):291 - 309.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The Einstein-Podolsky-Rosen Paradox.Bas C. van Fraassen - 1974 - Synthese 29 (1/4):291.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • (1 other version)The British Journal for the Philosophy of Science | Vol 73, No 3.Karl R. Popper - 1959 - British Journal for the Philosophy of Science 10 (38):171-171.
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  • The Problem of the Classical Limit of Quantum Mechanics and the Role of Self-Induced Decoherence.Mario Castagnino & Manuel Gadella - 2006 - Foundations of Physics 36 (6):920-952.
    Our account of the problem of the classical limit of quantum mechanics involves two elements. The first one is self-induced decoherence, conceived as a process that depends on the own dynamics of a closed quantum system governed by a Hamiltonian with continuous spectrum; the study of decoherence is addressed by means of a formalism used to give meaning to the van Hove states with diagonal singularities. The second element is macroscopicity represented by the limit $\hbar \rightarrow 0$ : when the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations