Switch to: Citations

Add references

You must login to add references.
  1. (2 other versions)Set Theory.Thomas Jech - 1999 - Studia Logica 63 (2):300-300.
    Download  
     
    Export citation  
     
    Bookmark   330 citations  
  • More canonical forms and dense free subsets.Heike Mildenberger - 2004 - Annals of Pure and Applied Logic 125 (1-3):75-99.
    Assuming the existence of ω compact cardinals in a model on GCH, we prove the consistency of some new canonization properties on ω. Our aim is to get as dense patterns in the distribution of indiscernibles as possible. We prove Theorem 2.1. thm2.1Suppose the consistency of “ZFC+GCH + there are infinitely many compact cardinals”. Then the following is consistent: ZFC+GCH + and for every family 0 (...))
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Large cardinals and definable counterexamples to the continuum hypothesis.Matthew Foreman & Menachem Magidor - 1995 - Annals of Pure and Applied Logic 76 (1):47-97.
    In this paper we consider whether L(R) has “enough information” to contain a counterexample to the continuum hypothesis. We believe this question provides deep insight into the difficulties surrounding the continuum hypothesis. We show sufficient conditions for L(R) not to contain such a counterexample. Along the way we establish many results about nonstationary towers, non-reflecting stationary sets, generalizations of proper and semiproper forcing and Chang's conjecture.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Canonical structure in the universe of set theory: part one.James Cummings, Matthew Foreman & Menachem Magidor - 2004 - Annals of Pure and Applied Logic 129 (1-3):211-243.
    We start by studying the relationship between two invariants isolated by Shelah, the sets of good and approachable points. As part of our study of these invariants, we prove a form of “singular cardinal compactness” for Jensen's square principle. We then study the relationship between internally approachable and tight structures, which parallels to a certain extent the relationship between good and approachable points. In particular we characterise the tight structures in terms of PCF theory and use our characterisation to prove (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Semimorasses and nonreflection at singular cardinals.Piotr Koszmider - 1995 - Annals of Pure and Applied Logic 72 (1):1-23.
    Some subfamilies of κ, for κ regular, κ λ, called -semimorasses are investigated. For λ = κ+, they constitute weak versions of Velleman's simplified -morasses, and for λ > κ+, they provide a combinatorial framework which in some cases has similar applications to the application of -morasses with this difference that the obtained objects are of size λ κ+, and not only of size κ+ as in the case of morasses. New consistency results involve existence of nonreflecting objects of singular (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Canonical structure in the universe of set theory: Part two.James Cummings, Matthew Foreman & Menachem Magidor - 2006 - Annals of Pure and Applied Logic 142 (1):55-75.
    We prove a number of consistency results complementary to the ZFC results from our paper [J. Cummings, M. Foreman, M. Magidor, Canonical structure in the universe of set theory: part one, Annals of Pure and Applied Logic 129 211–243]. We produce examples of non-tightly stationary mutually stationary sequences, sequences of cardinals on which every sequence of sets is mutually stationary, and mutually stationary sequences not concentrating on a fixed cofinality. We also give an alternative proof for the consistency of the (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Shelah's pcf theory and its applications.Maxim R. Burke & Menachem Magidor - 1990 - Annals of Pure and Applied Logic 50 (3):207-254.
    This is a survey paper giving a self-contained account of Shelah's theory of the pcf function pcf={cf:D is an ultrafilter on a}, where a is a set of regular cardinals such that a
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Large normal ideals concentrating on a fixed small cardinality.Saharon Shelah - 1996 - Archive for Mathematical Logic 35 (5-6):341-347.
    The property on the filter in Definition 1, a kind of large cardinal property, suffices for the proof in Liu Shelah [LiSh484] and is proved consistent as required there (see Conclusion 6). A natural property which looks better, not only is not obtained here, but is shown to be false (in Claim 7). On earlier related theorems see Gitik Shelah [GiSh310]. On such games see e.g. [Je], [Sh-b], [Sh-f].
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • PCF and infinite free subsets in an algebra.Saharon Shelah - 2002 - Archive for Mathematical Logic 41 (4):321-359.
    Download  
     
    Export citation  
     
    Bookmark   5 citations