Switch to: Citations

Add references

You must login to add references.
  1. The weirdest people in the world?Joseph Henrich, Steven J. Heine & Ara Norenzayan - 2010 - Behavioral and Brain Sciences 33 (2-3):61-83.
    Behavioral scientists routinely publish broad claims about human psychology and behavior in the world's top journals based on samples drawn entirely from Western, Educated, Industrialized, Rich, and Democratic (WEIRD) societies. Researchers – often implicitly – assume that either there is little variation across human populations, or that these “standard subjects” are as representative of the species as any other population. Are these assumptions justified? Here, our review of the comparative database from across the behavioral sciences suggests both that there is (...)
    Download  
     
    Export citation  
     
    Bookmark   757 citations  
  • In AI we trust? Perceptions about automated decision-making by artificial intelligence.Theo Araujo, Natali Helberger, Sanne Kruikemeier & Claes H. de Vreese - 2020 - AI and Society 35 (3):611-623.
    Fueled by ever-growing amounts of (digital) data and advances in artificial intelligence, decision-making in contemporary societies is increasingly delegated to automated processes. Drawing from social science theories and from the emerging body of research about algorithmic appreciation and algorithmic perceptions, the current study explores the extent to which personal characteristics can be linked to perceptions of automated decision-making by AI, and the boundary conditions of these perceptions, namely the extent to which such perceptions differ across media, (public) health, and judicial (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Fair, Transparent, and Accountable Algorithmic Decision-making Processes: The Premise, the Proposed Solutions, and the Open Challenges.Bruno Lepri, Nuria Oliver, Emmanuel Letouzé, Alex Pentland & Patrick Vinck - 2018 - Philosophy and Technology 31 (4):611-627.
    The combination of increased availability of large amounts of fine-grained human behavioral data and advances in machine learning is presiding over a growing reliance on algorithms to address complex societal problems. Algorithmic decision-making processes might lead to more objective and thus potentially fairer decisions than those made by humans who may be influenced by greed, prejudice, fatigue, or hunger. However, algorithmic decision-making has been criticized for its potential to enhance discrimination, information and power asymmetry, and opacity. In this paper, we (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Artificial intelligence ethics by design. Evaluating public perception on the importance of ethical design principles of artificial intelligence.Christopher Starke, Birte Keller & Kimon Kieslich - 2022 - Big Data and Society 9 (1).
    Despite the immense societal importance of ethically designing artificial intelligence, little research on the public perceptions of ethical artificial intelligence principles exists. This becomes even more striking when considering that ethical artificial intelligence development has the aim to be human-centric and of benefit for the whole society. In this study, we investigate how ethical principles are weighted in comparison to each other. This is especially important, since simultaneously considering ethical principles is not only costly, but sometimes even impossible, as developers (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Fairer machine learning in the real world: Mitigating discrimination without collecting sensitive data.Reuben Binns & Michael Veale - 2017 - Big Data and Society 4 (2):205395171774353.
    Decisions based on algorithmic, machine learning models can be unfair, reproducing biases in historical data used to train them. While computational techniques are emerging to address aspects of these concerns through communities such as discrimination-aware data mining and fairness, accountability and transparency machine learning, their practical implementation faces real-world challenges. For legal, institutional or commercial reasons, organisations might not hold the data on sensitive attributes such as gender, ethnicity, sexuality or disability needed to diagnose and mitigate emergent indirect discrimination-by-proxy, such (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Understanding perception of algorithmic decisions: Fairness, trust, and emotion in response to algorithmic management.Min Kyung Lee - 2018 - Big Data and Society 5 (1).
    Algorithms increasingly make managerial decisions that people used to make. Perceptions of algorithms, regardless of the algorithms' actual performance, can significantly influence their adoption, yet we do not fully understand how people perceive decisions made by algorithms as compared with decisions made by humans. To explore perceptions of algorithmic management, we conducted an online experiment using four managerial decisions that required either mechanical or human skills. We manipulated the decision-maker, and measured perceived fairness, trust, and emotional response. With the mechanical (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations