Switch to: References

Add citations

You must login to add citations.
  1. Reconstructing AI Ethics Principles: Rawlsian Ethics of Artificial Intelligence.Salla Westerstrand - 2024 - Science and Engineering Ethics 30 (5):1-21.
    The popularisation of Artificial Intelligence (AI) technologies has sparked discussion about their ethical implications. This development has forced governmental organisations, NGOs, and private companies to react and draft ethics guidelines for future development of ethical AI systems. Whereas many ethics guidelines address values familiar to ethicists, they seem to lack in ethical justifications. Furthermore, most tend to neglect the impact of AI on democracy, governance, and public deliberation. Existing research suggest, however, that AI can threaten key elements of western democracies (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Robots are judging me: Perceived fairness of algorithmic recruitment tools.Airlie Hilliard, Nigel Guenole & Franziska Leutner - 2022 - Frontiers in Psychology 13.
    Recent years have seen rapid advancements in selection assessments, shifting away from human and toward algorithmic judgments of candidates. Indeed, algorithmic recruitment tools have been created to screen candidates’ resumes, assess psychometric characteristics through game-based assessments, and judge asynchronous video interviews, among other applications. While research into candidate reactions to these technologies is still in its infancy, early research in this regard has explored user experiences and fairness perceptions. In this article, we review applicants’ perceptions of the procedural fairness of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Algorithmic management in a work context.Will Sutherland, Eliscia Kinder, Christine T. Wolf, Min Kyung Lee, Gemma Newlands & Mohammad Hossein Jarrahi - 2021 - Big Data and Society 8 (2).
    The rapid development of machine-learning algorithms, which underpin contemporary artificial intelligence systems, has created new opportunities for the automation of work processes and management functions. While algorithmic management has been observed primarily within the platform-mediated gig economy, its transformative reach and consequences are also spreading to more standard work settings. Exploring algorithmic management as a sociotechnical concept, which reflects both technological infrastructures and organizational choices, we discuss how algorithmic management may influence existing power and social structures within organizations. We identify (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Ethics of AI-Enabled Recruiting and Selection: A Review and Research Agenda.Anna Lena Hunkenschroer & Christoph Luetge - 2022 - Journal of Business Ethics 178 (4):977-1007.
    Companies increasingly deploy artificial intelligence technologies in their personnel recruiting and selection process to streamline it, making it faster and more efficient. AI applications can be found in various stages of recruiting, such as writing job ads, screening of applicant resumes, and analyzing video interviews via face recognition software. As these new technologies significantly impact people’s lives and careers but often trigger ethical concerns, the ethicality of these AI applications needs to be comprehensively understood. However, given the novelty of AI (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Conformity Assessments and Post-market Monitoring: A Guide to the Role of Auditing in the Proposed European AI Regulation.Jakob Mökander, Maria Axente, Federico Casolari & Luciano Floridi - 2022 - Minds and Machines 32 (2):241-268.
    The proposed European Artificial Intelligence Act (AIA) is the first attempt to elaborate a general legal framework for AI carried out by any major global economy. As such, the AIA is likely to become a point of reference in the larger discourse on how AI systems can (and should) be regulated. In this article, we describe and discuss the two primary enforcement mechanisms proposed in the AIA: the _conformity assessments_ that providers of high-risk AI systems are expected to conduct, and (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Rawls’s Original Position and Algorithmic Fairness.Ulrik Franke - 2021 - Philosophy and Technology 34 (4):1803-1817.
    Modern society makes extensive use of automated algorithmic decisions, fueled by advances in artificial intelligence. However, since these systems are not perfect, questions about fairness are increasingly investigated in the literature. In particular, many authors take a Rawlsian approach to algorithmic fairness. This article aims to identify some complications with this approach: Under which circumstances can Rawls’s original position reasonably be applied to algorithmic fairness decisions? First, it is argued that there are important differences between Rawls’s original position and a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)How to design a governable digital health ecosystem.Jessica Morley & Luciano Floridi - manuscript
    It has been suggested that to overcome the challenges facing the UK’s National Health Service (NHS) of an ageing population and reduced available funding, the NHS should be transformed into a more informationally mature and heterogeneous organisation, reliant on data-based and algorithmically-driven interactions between human, artificial, and hybrid (semi-artificial) agents. This transformation process would offer significant benefit to patients, clinicians, and the overall system, but it would also rely on a fundamental transformation of the healthcare system in a way that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ethics-based auditing of automated decision-making systems: nature, scope, and limitations.Jakob Mökander, Jessica Morley, Mariarosaria Taddeo & Luciano Floridi - 2021 - Science and Engineering Ethics 27 (4):1–30.
    Important decisions that impact humans lives, livelihoods, and the natural environment are increasingly being automated. Delegating tasks to so-called automated decision-making systems can improve efficiency and enable new solutions. However, these benefits are coupled with ethical challenges. For example, ADMS may produce discriminatory outcomes, violate individual privacy, and undermine human self-determination. New governance mechanisms are thus needed that help organisations design and deploy ADMS in ways that are ethical, while enabling society to reap the full economic and social benefits of (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Automated news recommendation in front of adversarial examples and the technical limits of transparency in algorithmic accountability.Antonin Descampe, Clément Massart, Simon Poelman, François-Xavier Standaert & Olivier Standaert - 2022 - AI and Society 37 (1):67-80.
    Algorithmic decision making is used in an increasing number of fields. Letting automated processes take decisions raises the question of their accountability. In the field of computational journalism, the algorithmic accountability framework proposed by Diakopoulos formalizes this challenge by considering algorithms as objects of human creation, with the goal of revealing the intent embedded into their implementation. A consequence of this definition is that ensuring accountability essentially boils down to a transparency question: given the appropriate reverse-engineering tools, it should be (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)The ethics of algorithms: key problems and solutions.Andreas Tsamados, Nikita Aggarwal, Josh Cowls, Jessica Morley, Huw Roberts, Mariarosaria Taddeo & Luciano Floridi - 2021 - AI and Society.
    Research on the ethics of algorithms has grown substantially over the past decade. Alongside the exponential development and application of machine learning algorithms, new ethical problems and solutions relating to their ubiquitous use in society have been proposed. This article builds on a review of the ethics of algorithms published in 2016, 2016). The goals are to contribute to the debate on the identification and analysis of the ethical implications of algorithms, to provide an updated analysis of epistemic and normative (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • What do we want from Explainable Artificial Intelligence (XAI)? – A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research.Markus Langer, Daniel Oster, Timo Speith, Lena Kästner, Kevin Baum, Holger Hermanns, Eva Schmidt & Andreas Sesing - 2021 - Artificial Intelligence 296 (C):103473.
    Previous research in Explainable Artificial Intelligence (XAI) suggests that a main aim of explainability approaches is to satisfy specific interests, goals, expectations, needs, and demands regarding artificial systems (we call these “stakeholders' desiderata”) in a variety of contexts. However, the literature on XAI is vast, spreads out across multiple largely disconnected disciplines, and it often remains unclear how explainability approaches are supposed to achieve the goal of satisfying stakeholders' desiderata. This paper discusses the main classes of stakeholders calling for explainability (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Transparency you can trust: Transparency requirements for artificial intelligence between legal norms and contextual concerns.Aurelia Tamò-Larrieux, Christoph Lutz, Eduard Fosch Villaronga & Heike Felzmann - 2019 - Big Data and Society 6 (1).
    Transparency is now a fundamental principle for data processing under the General Data Protection Regulation. We explore what this requirement entails for artificial intelligence and automated decision-making systems. We address the topic of transparency in artificial intelligence by integrating legal, social, and ethical aspects. We first investigate the ratio legis of the transparency requirement in the General Data Protection Regulation and its ethical underpinnings, showing its focus on the provision of information and explanation. We then discuss the pitfalls with respect (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Algorithms and values in justice and security.Paul Hayes, Ibo van de Poel & Marc Steen - 2020 - AI and Society 35 (3):533-555.
    This article presents a conceptual investigation into the value impacts and relations of algorithms in the domain of justice and security. As a conceptual investigation, it represents one step in a value sensitive design based methodology. Here, we explicate and analyse the expression of values of accuracy, privacy, fairness and equality, property and ownership, and accountability and transparency in this context. We find that values are sensitive to disvalue if algorithms are designed, implemented or deployed inappropriately or without sufficient consideration (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Pragmatic Turn in Explainable Artificial Intelligence.Andrés Páez - 2019 - Minds and Machines 29 (3):441-459.
    In this paper I argue that the search for explainable models and interpretable decisions in AI must be reformulated in terms of the broader project of offering a pragmatic and naturalistic account of understanding in AI. Intuitively, the purpose of providing an explanation of a model or a decision is to make it understandable to its stakeholders. But without a previous grasp of what it means to say that an agent understands a model or a decision, the explanatory strategies will (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • From what to how: an initial review of publicly available AI ethics tools, methods and research to translate principles into practices.Jessica Morley, Luciano Floridi, Libby Kinsey & Anat Elhalal - 2020 - Science and Engineering Ethics 26 (4):2141-2168.
    The debate about the ethical implications of Artificial Intelligence dates from the 1960s :741–742, 1960; Wiener in Cybernetics: or control and communication in the animal and the machine, MIT Press, New York, 1961). However, in recent years symbolic AI has been complemented and sometimes replaced by Neural Networks and Machine Learning techniques. This has vastly increased its potential utility and impact on society, with the consequence that the ethical debate has gone mainstream. Such a debate has primarily focused on principles—the (...)
    Download  
     
    Export citation  
     
    Bookmark   85 citations  
  • Democratizing Algorithmic Fairness.Pak-Hang Wong - 2020 - Philosophy and Technology 33 (2):225-244.
    Algorithms can now identify patterns and correlations in the (big) datasets, and predict outcomes based on those identified patterns and correlations with the use of machine learning techniques and big data, decisions can then be made by algorithms themselves in accordance with the predicted outcomes. Yet, algorithms can inherit questionable values from the datasets and acquire biases in the course of (machine) learning, and automated algorithmic decision-making makes it more difficult for people to see algorithms as biased. While researchers have (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Algorithmic Decision-Making, Agency Costs, and Institution-Based Trust.Keith Dowding & Brad R. Taylor - 2024 - Philosophy and Technology 37 (2):1-22.
    Algorithm Decision Making (ADM) systems designed to augment or automate human decision-making have the potential to produce better decisions while also freeing up human time and attention for other pursuits. For this potential to be realised, however, algorithmic decisions must be sufficiently aligned with human goals and interests. We take a Principal-Agent (P-A) approach to the questions of ADM alignment and trust. In a broad sense, ADM is beneficial if and only if human principals can trust algorithmic agents to act (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Understanding user sensemaking in fairness and transparency in algorithms: algorithmic sensemaking in over-the-top platform.Donghee Shin, Joon Soo Lim, Norita Ahmad & Mohammed Ibahrine - forthcoming - AI and Society:1-14.
    A number of artificial intelligence systems have been proposed to assist users in identifying the issues of algorithmic fairness and transparency. These AI systems use diverse bias detection methods from various perspectives, including exploratory cues, interpretable tools, and revealing algorithms. This study explains the design of AI systems by probing how users make sense of fairness and transparency as they are hypothetical in nature, with no specific ways for evaluation. Focusing on individual perceptions of fairness and transparency, this study examines (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Co-designing algorithms for governance: Ensuring responsible and accountable algorithmic management of refugee camp supplies.Mark van Embden Andres, S. Ilker Birbil, Paul Koot & Rianne Dekker - 2022 - Big Data and Society 9 (1).
    There is increasing criticism on the use of big data and algorithms in public governance. Studies revealed that algorithms may reinforce existing biases and defy scrutiny by public officials using them and citizens subject to algorithmic decisions and services. In response, scholars have called for more algorithmic transparency and regulation. These are useful, but ex post solutions in which the development of algorithms remains a rather autonomous process. This paper argues that co-design of algorithms with relevant stakeholders from government and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cognitive architectures for artificial intelligence ethics.Steve J. Bickley & Benno Torgler - 2023 - AI and Society 38 (2):501-519.
    As artificial intelligence (AI) thrives and propagates through modern life, a key question to ask is how to include humans in future AI? Despite human involvement at every stage of the production process from conception and design through to implementation, modern AI is still often criticized for its “black box” characteristics. Sometimes, we do not know what really goes on inside or how and why certain conclusions are met. Future AI will face many dilemmas and ethical issues unforeseen by their (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Promises and Pitfalls of Algorithm Use by State Authorities.Maryam Amir Haeri, Kathrin Hartmann, Jürgen Sirsch, Georg Wenzelburger & Katharina A. Zweig - 2022 - Philosophy and Technology 35 (2):1-31.
    Algorithmic systems are increasingly used by state agencies to inform decisions about humans. They produce scores on risks of recidivism in criminal justice, indicate the probability for a job seeker to find a job in the labor market, or calculate whether an applicant should get access to a certain university program. In this contribution, we take an interdisciplinary perspective, provide a bird’s eye view of the different key decisions that are to be taken when state actors decide to use an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Algorithmic decision-making employing profiling: will trade secrecy protection render the right to explanation toothless?Paul B. de Laat - 2022 - Ethics and Information Technology 24 (2).
    Algorithmic decision-making based on profiling may significantly affect people’s destinies. As a rule, however, explanations for such decisions are lacking. What are the chances for a “right to explanation” to be realized soon? After an exploration of the regulatory efforts that are currently pushing for such a right it is concluded that, at the moment, the GDPR stands out as the main force to be reckoned with. In cases of profiling, data subjects are granted the right to receive meaningful information (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Zombies in the Loop? Humans Trust Untrustworthy AI-Advisors for Ethical Decisions.Sebastian Krügel, Andreas Ostermaier & Matthias Uhl - 2022 - Philosophy and Technology 35 (1):1-37.
    Departing from the claim that AI needs to be trustworthy, we find that ethical advice from an AI-powered algorithm is trusted even when its users know nothing about its training data and when they learn information about it that warrants distrust. We conducted online experiments where the subjects took the role of decision-makers who received advice from an algorithm on how to deal with an ethical dilemma. We manipulated the information about the algorithm and studied its influence. Our findings suggest (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)The ethics of algorithms: key problems and solutions.Andreas Tsamados, Nikita Aggarwal, Josh Cowls, Jessica Morley, Huw Roberts, Mariarosaria Taddeo & Luciano Floridi - 2022 - AI and Society 37 (1):215-230.
    Research on the ethics of algorithms has grown substantially over the past decade. Alongside the exponential development and application of machine learning algorithms, new ethical problems and solutions relating to their ubiquitous use in society have been proposed. This article builds on a review of the ethics of algorithms published in 2016, 2016). The goals are to contribute to the debate on the identification and analysis of the ethical implications of algorithms, to provide an updated analysis of epistemic and normative (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • From Responsibility to Reason-Giving Explainable Artificial Intelligence.Kevin Baum, Susanne Mantel, Timo Speith & Eva Schmidt - 2022 - Philosophy and Technology 35 (1):1-30.
    We argue that explainable artificial intelligence (XAI), specifically reason-giving XAI, often constitutes the most suitable way of ensuring that someone can properly be held responsible for decisions that are based on the outputs of artificial intelligent (AI) systems. We first show that, to close moral responsibility gaps (Matthias 2004), often a human in the loop is needed who is directly responsible for particular AI-supported decisions. Second, we appeal to the epistemic condition on moral responsibility to argue that, in order to (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Ethics-based auditing of automated decision-making systems: intervention points and policy implications.Jakob Mökander & Maria Axente - 2023 - AI and Society 38 (1):153-171.
    Organisations increasingly use automated decision-making systems (ADMS) to inform decisions that affect humans and their environment. While the use of ADMS can improve the accuracy and efficiency of decision-making processes, it is also coupled with ethical challenges. Unfortunately, the governance mechanisms currently used to oversee human decision-making often fail when applied to ADMS. In previous work, we proposed that ethics-based auditing (EBA)—that is, a structured process by which ADMS are assessed for consistency with relevant principles or norms—can (a) help organisations (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Leveraging Artificial Intelligence in Marketing for Social Good—An Ethical Perspective.Erik Hermann - 2022 - Journal of Business Ethics 179 (1):43-61.
    Artificial intelligence is shaping strategy, activities, interactions, and relationships in business and specifically in marketing. The drawback of the substantial opportunities AI systems and applications provide in marketing are ethical controversies. Building on the literature on AI ethics, the authors systematically scrutinize the ethical challenges of deploying AI in marketing from a multi-stakeholder perspective. By revealing interdependencies and tensions between ethical principles, the authors shed light on the applicability of a purely principled, deontological approach to AI ethics in marketing. To (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Conservative AI and social inequality: conceptualizing alternatives to bias through social theory.Mike Zajko - 2021 - AI and Society 36 (3):1047-1056.
    In response to calls for greater interdisciplinary involvement from the social sciences and humanities in the development, governance, and study of artificial intelligence systems, this paper presents one sociologist’s view on the problem of algorithmic bias and the reproduction of societal bias. Discussions of bias in AI cover much of the same conceptual terrain that sociologists studying inequality have long understood using more specific terms and theories. Concerns over reproducing societal bias should be informed by an understanding of the ways (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Algorithmic bias and the Value Sensitive Design approach.Judith Simon, Pak-Hang Wong & Gernot Rieder - 2020 - Internet Policy Review 9 (4).
    Recently, amid growing awareness that computer algorithms are not neutral tools but can cause harm by reproducing and amplifying bias, attempts to detect and prevent such biases have intensified. An approach that has received considerable attention in this regard is the Value Sensitive Design (VSD) methodology, which aims to contribute to both the critical analysis of (dis)values in existing technologies and the construction of novel technologies that account for specific desired values. This article provides a brief overview of the key (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Legal requirements on explainability in machine learning.Adrien Bibal, Michael Lognoul, Alexandre de Streel & Benoît Frénay - 2020 - Artificial Intelligence and Law 29 (2):149-169.
    Deep learning and other black-box models are becoming more and more popular today. Despite their high performance, they may not be accepted ethically or legally because of their lack of explainability. This paper presents the increasing number of legal requirements on machine learning model interpretability and explainability in the context of private and public decision making. It then explains how those legal requirements can be implemented into machine-learning models and concludes with a call for more inter-disciplinary research on explainability.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Brain–Computer Interfaces: Lessons to Be Learned from the Ethics of Algorithms.Andreas Wolkenstein, Ralf J. Jox & Orsolya Friedrich - 2018 - Cambridge Quarterly of Healthcare Ethics 27 (4):635-646.
    :Brain–computer interfaces are driven essentially by algorithms; however, the ethical role of such algorithms has so far been neglected in the ethical assessment of BCIs. The goal of this article is therefore twofold: First, it aims to offer insights into whether the problems related to the ethics of BCIs can be better grasped with the help of already existing work on the ethics of algorithms. As a second goal, the article explores what kinds of solutions are available in that body (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A call to action: Designing a more transparent online world for children and young people.Virginia Portillo, Liz Dowthwaite, Helen Creswick, Elvira Pérez Vallejos, Carolyn Ten Holter, Ansgar Koene, Marina Jirotka & Jun Zhao - 2024 - Journal of Responsible Technology 19 (C):100093.
    Download  
     
    Export citation  
     
    Bookmark  
  • Deep Learning Applied to Scientific Discovery: A Hot Interface with Philosophy of Science.Louis Vervoort, Henry Shevlin, Alexey A. Melnikov & Alexander Alodjants - 2023 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 54 (2):339-351.
    We review publications in automated scientific discovery using deep learning, with the aim of shedding light on problems with strong connections to philosophy of science, of physics in particular. We show that core issues of philosophy of science, related, notably, to the nature of scientific theories; the nature of unification; and of causation loom large in scientific deep learning. Therefore, advances in deep learning could, and ideally should, have impact on philosophy of science, and vice versa. We suggest lines of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fairness perceptions of algorithmic decision-making: A systematic review of the empirical literature.Frank Marcinkowski, Birte Keller, Janine Baleis & Christopher Starke - 2022 - Big Data and Society 9 (2).
    Algorithmic decision-making increasingly shapes people's daily lives. Given that such autonomous systems can cause severe harm to individuals and social groups, fairness concerns have arisen. A human-centric approach demanded by scholars and policymakers requires considering people's fairness perceptions when designing and implementing algorithmic decision-making. We provide a comprehensive, systematic literature review synthesizing the existing empirical insights on perceptions of algorithmic fairness from 58 empirical studies spanning multiple domains and scientific disciplines. Through thorough coding, we systemize the current empirical literature along (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Challenges in enabling user control over algorithm-based services.Pascal D. König - 2024 - AI and Society 39 (1):195-205.
    Algorithmic systems that provide services to people by supporting or replacing human decision-making promise greater convenience in various areas. The opacity of these applications, however, means that it is not clear how much they truly serve their users. A promising way to address the issue of possible undesired biases consists in giving users control by letting them configure a system and aligning its performance with users’ own preferences. However, as the present paper argues, this form of control over an algorithmic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Towards Transparency by Design for Artificial Intelligence.Heike Felzmann, Eduard Fosch-Villaronga, Christoph Lutz & Aurelia Tamò-Larrieux - 2020 - Science and Engineering Ethics 26 (6):3333-3361.
    In this article, we develop the concept of Transparency by Design that serves as practical guidance in helping promote the beneficial functions of transparency while mitigating its challenges in automated-decision making environments. With the rise of artificial intelligence and the ability of AI systems to make automated and self-learned decisions, a call for transparency of how such systems reach decisions has echoed within academic and policy circles. The term transparency, however, relates to multiple concepts, fulfills many functions, and holds different (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Philosophical Inquiry into Computer Intentionality: Machine Learning and Value Sensitive Design.Dmytro Mykhailov - 2023 - Human Affairs 33 (1):115-127.
    Intelligent algorithms together with various machine learning techniques hold a dominant position among major challenges for contemporary value sensitive design. Self-learning capabilities of current AI applications blur the causal link between programmer and computer behavior. This creates a vital challenge for the design, development and implementation of digital technologies nowadays. This paper seeks to provide an account of this challenge. The main question that shapes the current analysis is the following: What conceptual tools can be developed within the value sensitive (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • People Prefer Moral Discretion to Algorithms: Algorithm Aversion Beyond Intransparency.Johanna Jauernig, Matthias Uhl & Gari Walkowitz - 2022 - Philosophy and Technology 35 (1):1-25.
    We explore aversion to the use of algorithms in moral decision-making. So far, this aversion has been explained mainly by the fear of opaque decisions that are potentially biased. Using incentivized experiments, we study which role the desire for human discretion in moral decision-making plays. This seems justified in light of evidence suggesting that people might not doubt the quality of algorithmic decisions, but still reject them. In our first study, we found that people prefer humans with decision-making discretion to (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • AI under great uncertainty: implications and decision strategies for public policy.Maria Nordström - 2022 - AI and Society 37 (4):1703-1714.
    Decisions where there is not enough information for a well-informed decision due to unidentified consequences, options, or undetermined demarcation of the decision problem are called decisions under great uncertainty. This paper argues that public policy decisions on _how_ and _if_ to implement decision-making processes based on machine learning and AI for public use are such decisions. Decisions on public policy on AI are uncertain due to three features specific to the current landscape of AI, namely (i) the vagueness of the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Ethical Artificial Intelligence in Chemical Research and Development: A Dual Advantage for Sustainability.Erik Hermann, Gunter Hermann & Jean-Christophe Tremblay - 2021 - Science and Engineering Ethics 27 (4):1-16.
    Artificial intelligence can be a game changer to address the global challenge of humanity-threatening climate change by fostering sustainable development. Since chemical research and development lay the foundation for innovative products and solutions, this study presents a novel chemical research and development process backed with artificial intelligence and guiding ethical principles to account for both process- and outcome-related sustainability. Particularly in ethically salient contexts, ethical principles have to accompany research and development powered by artificial intelligence to promote social and environmental (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Algorithmic augmentation of democracy: considering whether technology can enhance the concepts of democracy and the rule of law through four hypotheticals.Paul Burgess - 2022 - AI and Society 37 (1):97-112.
    The potential use, relevance, and application of AI and other technologies in the democratic process may be obvious to some. However, technological innovation and, even, its consideration may face an intuitive push-back in the form of algorithm aversion (Dietvorst et al. J Exp Psychol 144(1):114–126, 2015). In this paper, I confront this intuition and suggest that a more ‘extreme’ form of technological change in the democratic process does not necessarily result in a worse outcome in terms of the fundamental concepts (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Dissecting the Algorithmic Leviathan: On the Socio-Political Anatomy of Algorithmic Governance.Pascal D. König - 2020 - Philosophy and Technology 33 (3):467-485.
    A growing literature is taking an institutionalist and governance perspective on how algorithms shape society based on unprecedented capacities for managing social complexity. Algorithmic governance altogether emerges as a novel and distinctive kind of societal steering. It appears to transcend established categories and modes of governance—and thus seems to call for new ways of thinking about how social relations can be regulated and ordered. However, as this paper argues, despite its novel way of realizing outcomes of collective steering and coordination, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Dissecting scientific explanation in AI (sXAI): A case for medicine and healthcare.Juan M. Durán - 2021 - Artificial Intelligence 297 (C):103498.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • From algorithmic governance to govern algorithm.Zichun Xu - forthcoming - AI and Society:1-10.
    Algorithm is the core category and basic methods of the digital age, and advanced technologies such as big data, artificial intelligence, and blockchain all need to rely on various algorithm designs or take the algorithm as the underlying principle. However, due to the characteristics of algorithm design, application, and technology itself, there are also hidden worries such as algorithm black-box, algorithm discrimination, and difficulty in accountability in the operation process to varying degrees. This paper summarizes these problems into three aspects: (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Attitudes toward artificial intelligence: combining three theoretical perspectives on technology acceptance.Pascal D. Koenig - forthcoming - AI and Society:1-13.
    Evidence on AI acceptance comes from a diverse field comprising public opinion research and largely experimental studies from various disciplines. Differing theoretical approaches in this research, however, imply heterogeneous ways of studying AI acceptance. The present paper provides a framework for systematizing different uses. It identifies three families of theoretical perspectives informing research on AI acceptance—user acceptance, delegation acceptance, and societal adoption acceptance. These models differ in scope, each has elements specific to them, and the connotation of technology acceptance thus (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Concordance as evidence in the Watson for Oncology decision-support system.Aaro Tupasela & Ezio Di Nucci - 2020 - AI and Society 35 (4):811-818.
    Machine learning platforms have emerged as a new promissory technology that some argue will revolutionize work practices across a broad range of professions, including medical care. During the past few years, IBM has been testing its Watson for Oncology platform at several oncology departments around the world. Published reports, news stories, as well as our own empirical research show that in some cases, the levels of concordance over recommended treatment protocols between the platform and human oncologists have been quite low. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Consumers are willing to pay a price for explainable, but not for green AI. Evidence from a choice-based conjoint analysis.Markus B. Siewert, Stefan Wurster & Pascal D. König - 2022 - Big Data and Society 9 (1).
    A major challenge with the increasing use of Artificial Intelligence applications is to manage the long-term societal impacts of this technology. Two central concerns that have emerged in this respect are that the optimized goals behind the data processing of AI applications usually remain opaque and the energy footprint of their data processing is growing quickly. This study thus explores how much people value the transparency and environmental sustainability of AI using the example of personal AI assistants. The results from (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Political machines: a framework for studying politics in social machines.Orestis Papakyriakopoulos - 2022 - AI and Society 37 (1):113-130.
    In the age of ubiquitous computing and artificially intelligent applications, social machines serves as a powerful framework for understanding and interpreting interactions in socio-algorithmic ecosystems. Although researchers have largely used it to analyze the interactions of individuals and algorithms, limited attempts have been made to investigate the politics in social machines. In this study, I claim that social machines are per se political machines, and introduce a five-point framework for classifying influence processes in socio-algorithmic ecosystems. By drawing from scholars from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Towards a political theory of data justice: a public good perspective.Chi Kwok & Ngai Keung Chan - 2021 - Journal of Information, Communication and Ethics in Society 19 (3):374-390.
    Purpose This study aims to develop an interdisciplinary political theory of data justice by connecting three major political theories of the public good with empirical studies about the functions of big data and offering normative principles for restricting and guiding the state’s data practices from a public good perspective. Design/methodology/approach Drawing on three major political theories of the public good – the market failure approach, the basic rights approach and the democratic approach – and critical data studies, this study synthesizes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Rawlsian Algorithmic Fairness and a Missing Aggregation Property of the Difference Principle.Ulrik Franke - 2024 - Philosophy and Technology 37 (3):1-19.
    Modern society makes extensive use of automated algorithmic decisions, fueled by advances in artificial intelligence. However, since these systems are not perfect, questions about fairness are increasingly investigated in the literature. In particular, many authors take a Rawlsian approach to algorithmic fairness. Based on complications with this approach identified in the literature, this article discusses how Rawls’s theory in general, and especially the difference principle, should reasonably be applied to algorithmic fairness decisions. It is observed that proposals to achieve Rawlsian (...)
    Download  
     
    Export citation  
     
    Bookmark