Switch to: Citations

Add references

You must login to add references.
  1. Modelling as Indirect Representation? The Lotka–Volterra Model Revisited.Tarja Knuuttila & Andrea Loettgers - 2017 - British Journal for the Philosophy of Science 68 (4):1007-1036.
    ABSTRACT Is there something specific about modelling that distinguishes it from many other theoretical endeavours? We consider Michael Weisberg’s thesis that modelling is a form of indirect representation through a close examination of the historical roots of the Lotka–Volterra model. While Weisberg discusses only Volterra’s work, we also study Lotka’s very different design of the Lotka–Volterra model. We will argue that while there are elements of indirect representation in both Volterra’s and Lotka’s modelling approaches, they are largely due to two (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • (1 other version)Models and fiction.Roman Frigg - 2007 - Synthese 172 (2):251-268.
    Most scientific models are not physical objects, and this raises important questions. What sort of entity are models, what is truth in a model, and how do we learn about models? In this paper I argue that models share important aspects in common with literary fiction, and that therefore theories of fiction can be brought to bear on these questions. In particular, I argue that the pretence theory as developed by Walton (1990, Mimesis as make-believe: on the foundations of the (...)
    Download  
     
    Export citation  
     
    Bookmark   191 citations  
  • Informational versus functional theories of scientific representation.Anjan Chakravartty - 2010 - Synthese 172 (2):197-213.
    Recent work in the philosophy of science has generated an apparent conflict between theories attempting to explicate the nature of scientific representation. On one side, there are what one might call 'informational' views, which emphasize objective relations (such as similarity, isomorphism, and homomorphism) between representations (theories, models, simulations, diagrams, etc.) and their target systems. On the other side, there are what one might call 'functional' views, which emphasize cognitive activities performed in connection with these targets, such as interpretation and inference. (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Circularity and reliability in measurement.Hasok Chang - 1995 - Perspectives on Science 3 (2):153-172.
    The direct use of a physical law for the purpose of measurement creates a problem of circularity: the law needs to be empirically tested in order to ensure the reliability of measurement, but the testing requires that we already know the value of the quantity to be measured. This problem is discussed through some detailed examples of energy measurements in quantum physics; three major methods are analyzed in their interrelation, with a focus on the method of “material retardation.” It seems (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Old and New Problems in Philosophy of Measurement.Eran Tal - 2013 - Philosophy Compass 8 (12):1159-1173.
    The philosophy of measurement studies the conceptual, ontological, epistemic, and technological conditions that make measurement possible and reliable. A new wave of philosophical scholarship has emerged in the last decade that emphasizes the material and historical dimensions of measurement and the relationships between measurement and theoretical modeling. This essay surveys these developments and contrasts them with earlier work on the semantics of quantity terms and the representational character of measurement. The conclusions highlight four characteristics of the emerging research program in (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Modeling and Measurement: The Criterion of Empirical Grounding.Bas C. van Fraassen - 2012 - Philosophy of Science 79 (5):773-784.
    A scientific theory offers models for the phenomena in its domain; these models involve theoretical quantities, and a model's structure is the set of relations it imposes on these quantities. A fundamental demand in scientific practice is for those quantities to be clearly and feasibly related to measurement. This demand for empirical grounding can be articulated by displaying the theory-dependent criteria for a procedure to count as a measurement and for identifying the quantity it measures.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Twilight of the perfect model model.Paul Teller - 2001 - Erkenntnis 55 (3):393-415.
    Download  
     
    Export citation  
     
    Bookmark   169 citations  
  • The strategy of model-based science.Peter Godfrey-Smith - 2006 - Biology and Philosophy 21 (5):725-740.
    Download  
     
    Export citation  
     
    Bookmark   283 citations  
  • How models are used to represent reality.Ronald N. Giere - 2004 - Philosophy of Science 71 (5):742-752.
    Most recent philosophical thought about the scientific representation of the world has focused on dyadic relationships between language-like entities and the world, particularly the semantic relationships of reference and truth. Drawing inspiration from diverse sources, I argue that we should focus on the pragmatic activity of representing, so that the basic representational relationship has the form: Scientists use models to represent aspects of the world for specific purposes. Leaving aside the terms "law" and "theory," I distinguish principles, specific conditions, models, (...)
    Download  
     
    Export citation  
     
    Bookmark   311 citations  
  • Saving the phenomena.James Bogen & James Woodward - 1988 - Philosophical Review 97 (3):303-352.
    Download  
     
    Export citation  
     
    Bookmark   391 citations  
  • What is a Target System?Alkistis Elliott-Graves - 2020 - Biology and Philosophy 35 (2):1-22.
    Many phenomena in the natural world are complex, so scientists study them through simplified and idealised models. Philosophers of science have sought to explain how these models relate to the world. On most accounts, models do not represent the world directly, but through target systems. However, our knowledge of target systems is incomplete. First, what is the process by which target systems come about? Second, what types of entity are they? I argue that the basic conception of target systems, on (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Calibration: Modelling the measurement process.Eran Tal - 2017 - Studies in History and Philosophy of Science Part A 65:33-45.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Forging Model/World Relations: Relevance and Reliability.Isabelle Peschard - 2012 - Philosophy of Science 79 (5):749-760.
    The relation between models and the world is mediated by experimental procedures generating data that are used as evidence to evaluate the model. Data can serve as empirical evidence, for or against, only if they result from reliable experimental procedures. The aim of this article is to discuss the role of relevance judgments in the evaluation of reliability and to clarify the conditions under which reliability can be a strictly empirical matter. It is argued that reliability is a strictly empirical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Reinflating the semantic approach.Steven French & James Ladyman - 1999 - International Studies in the Philosophy of Science 13 (2):103 – 121.
    The semantic, or model-theoretic, approach to theories has recently come under criticism on two fronts: (i) it is claimed that it cannot account for the wide diversity of models employed in scientific practice—a claim which has led some to propose a “deflationary” account of models; (ii) it is further contended that the sense of “model” used by the approach differs from that given in model theory. Our aim in the present work is to articulate a possible response to these claims, (...)
    Download  
     
    Export citation  
     
    Bookmark   145 citations  
  • Instrumental Perspectivism: Is AI Machine Learning Technology like NMR Spectroscopy?Sandra D. Mitchell - unknown
    The question, “Will science remain human?” expresses a worry that deep learning algorithms will replace scientists in making crucial judgments of classification and inference and that something crucial will be lost if that happens. Ever since the introduction of telescopes and microscopes humans have relied on technologies to “extend” beyond human sensory perception in acquiring scientific knowledge. In this paper I explore whether the ways in which new learning technologies “extend” beyond human cognitive aspects of science can be treated instrumentally. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Modelling and representing: An artefactual approach to model-based representation.Tarja Knuuttila - 2011 - Studies in History and Philosophy of Science Part A 42 (2):262-271.
    The recent discussion on scientific representation has focused on models and their relationship to the real world. It has been assumed that models give us knowledge because they represent their supposed real target systems. However, here agreement among philosophers of science has tended to end as they have presented widely different views on how representation should be understood. I will argue that the traditional representational approach is too limiting as regards the epistemic value of modelling given the focus on the (...)
    Download  
     
    Export citation  
     
    Bookmark   136 citations  
  • An Inferential Conception of the Application of Mathematics.Otávio Bueno & Mark Colyvan - 2011 - Noûs 45 (2):345-374.
    A number of people have recently argued for a structural approach to accounting for the applications of mathematics. Such an approach has been called "the mapping account". According to this view, the applicability of mathematics is fully accounted for by appreciating the relevant structural similarities between the empirical system under study and the mathematics used in the investigation ofthat system. This account of applications requires the truth of applied mathematical assertions, but it does not require the existence of mathematical objects. (...)
    Download  
     
    Export citation  
     
    Bookmark   107 citations  
  • Models and structures: Phenomenological and partial.Otávio Bueno, Steven French & James Ladyman - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (1):43-46.
    In a recent paper, Suárez and Cartwright return to the example of London and London's construction of a model for superconductivity and raise a number of concerns against the account of this construction presented in French and Ladyman and elsewhere. In this discussion note, we examine the challenge they raised and offer our responses.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • William H. Bragg's Corpuscular Theory of X-Rays and γ-Rays.Roger H. Stuewer - 1971 - British Journal for the History of Science 5 (3):258-281.
    The modern corpuscular theory of radiation was born in 1905 when Einstein advanced his light quantum hypothesis; and the steps by which Einstein's hypothesis, after years of profound scepticism, was finally and fully vindicated by Arthur Compton's 1922 scattering experiments constitutes one of the most stimulating chapters in the history of recent physics. To begin to appreciate the complexity of this chapter, however, it is only necessary to emphasize an elementary but very significant point, namely, that while Einstein based his (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Models and fictions in science.Peter Godfrey-Smith - 2009 - Philosophical Studies 143 (1):101 - 116.
    Non-actual model systems discussed in scientific theories are compared to fictions in literature. This comparison may help with the understanding of similarity relations between models and real-world target systems. The ontological problems surrounding fictions in science may be particularly difficult, however. A comparison is also made to ontological problems that arise in the philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  • There Is a Special Problem of Scientific Representation.Brandon Boesch - 2017 - Philosophy of Science 84 (5):970-981.
    Callender and Cohen argue that there is no need for a special account of the constitution of scientific representation. I argue that scientific representation is communal and therefore deeply tied to the practice in which it is embedded. The communal nature is accounted for by licensing, the activities of scientific practice by which scientists establish a representation. A case study of the Lotka-Volterra model reveals how licensure is a constitutive element of the representational relationship. Thus, any account of the constitution (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Models Don’t Decompose That Way: A Holistic View of Idealized Models.Collin Rice - 2019 - British Journal for the Philosophy of Science 70 (1):179-208.
    Many accounts of scientific modelling assume that models can be decomposed into the contributions made by their accurate and inaccurate parts. These accounts then argue that the inaccurate parts of the model can be justified by distorting only what is irrelevant. In this paper, I argue that this decompositional strategy requires three assumptions that are not typically met by our best scientific models. In response, I propose an alternative view in which idealized models are characterized as holistically distorted representations that (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • An inferential conception of scientific representation.Mauricio Suárez - 2004 - Philosophy of Science 71 (5):767-779.
    This paper defends an inferential conception of scientific representation. It approaches the notion of representation in a deflationary spirit, and minimally characterizes the concept as it appears in science by means of two necessary conditions: its essential directionality and its capacity to allow surrogate reasoning and inference. The conception is defended by showing that it successfully meets the objections that make its competitors, such as isomorphism and similarity, untenable. In addition the inferential conception captures the objectivity of the cognitive representations (...)
    Download  
     
    Export citation  
     
    Bookmark   254 citations  
  • Scientific representation, interpretation, and surrogative reasoning.Gabriele Contessa - 2007 - Philosophy of Science 74 (1):48-68.
    In this paper, I develop Mauricio Suárez’s distinction between denotation, epistemic representation, and faithful epistemic representation. I then outline an interpretational account of epistemic representation, according to which a vehicle represents a target for a certain user if and only if the user adopts an interpretation of the vehicle in terms of the target, which would allow them to perform valid (but not necessarily sound) surrogative inferences from the model to the system. The main difference between the interpretational conception I (...)
    Download  
     
    Export citation  
     
    Bookmark   112 citations  
  • On the pragmatic equivalence between representing data and phenomena.James Nguyen - 2016 - Philosophy of Science 83 (2):171- 191.
    Van Fraassen argues that data provide the target-end structures required by structuralist accounts of scientific representation. But models represent phenomena not data. Van Fraassen agrees but argues that there is no pragmatic difference between taking a scientific model to accurately represent a physical system and accurately represent data extracted from it. In this article I reconstruct his argument and show that it turns on the false premise that the pragmatic content of acts of representation include doxastic commitments.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Modeling reality.Christopher Pincock - 2011 - Synthese 180 (1):19 - 32.
    My aim in this paper is to articulate an account of scientific modeling that reconciles pluralism about modeling with a modest form of scientific realism. The central claim of this approach is that the models of a given physical phenomenon can present different aspects of the phenomenon. This allows us, in certain special circumstances, to be confident that we are capturing genuine features of the world, even when our modeling occurs independently of a wholly theoretical motivation. This framework is illustrated (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Data, phenomena, and reliability.James Woodward - 2000 - Philosophy of Science 67 (3):179.
    This paper explores how data serve as evidence for phenomena. In contrast to standard philosophical models which invite us to think of evidential relationships as logical relationships, I argue that evidential relationships in the context of data-to-phenomena reasoning are empirical relationships that depend on holding the right sort of pattern of counterfactual dependence between the data and the conclusions investigators reach on the phenomena themselves.
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Empirical adequacy: A partial structures approach.Otávio Bueno - 1997 - Studies in History and Philosophy of Science Part A 28 (4):585-610.
    Based on da Costa's and French's notions of partial structures and pragmatic truth, this paper examines two possible characterizations of the concept of empirical adequacy, one depending on the notion of partial isomorphism, the other on the hierarchy of partial models of phenomena, and both compatible with an empiricist view. These formulations can then be employed to illuminate certain aspects of scientific practice.An empirical theory must single out a specific part of the world, establish reference to that part, and say—by (...)
    Download  
     
    Export citation  
     
    Bookmark   83 citations