Switch to: Citations

Add references

You must login to add references.
  1. On the cofinality of ultrapowers.Andreas Blass & Heike Mildenberger - 1999 - Journal of Symbolic Logic 64 (2):727-736.
    We prove some restrictions on the possible cofinalities of ultrapowers of the natural numbers with respect to ultrafilters on the natural numbers. The restrictions involve three cardinal characteristics of the continuum, the splitting number s, the unsplitting number r, and the groupwise density number g. We also prove some related results for reduced powers with respect to filters other than ultrafilters.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Near coherence of filters. I. Cofinal equivalence of models of arithmetic.Andreas Blass - 1986 - Notre Dame Journal of Formal Logic 27 (4):579-591.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Groupwise density and related cardinals.Andreas Blass - 1990 - Archive for Mathematical Logic 30 (1):1-11.
    We prove several theorems about the cardinal $\mathfrak{g}$ associated with groupwise density. With respect to a natural ordering of families of nond-ecreasing maps fromω toω, all families of size $< \mathfrak{g}$ are below all unbounded families. With respect to a natural ordering of filters onω, all filters generated by $< \mathfrak{g}$ sets are below all non-feeble filters. If $\mathfrak{u}< \mathfrak{g}$ then $\mathfrak{b}< \mathfrak{u}$ and $\mathfrak{g} = \mathfrak{d} = \mathfrak{c}$ . (The definitions of these cardinals are recalled in the introduction.) Finally, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Souslin forcing.Jaime I. Ihoda & Saharon Shelah - 1988 - Journal of Symbolic Logic 53 (4):1188-1207.
    We define the notion of Souslin forcing, and we prove that some properties are preserved under iteration. We define a weaker form of Martin's axiom, namely MA(Γ + ℵ 0 ), and using the results on Souslin forcing we show that MA(Γ + ℵ 0 ) is consistent with the existence of a Souslin tree and with the splitting number s = ℵ 1 . We prove that MA(Γ + ℵ 0 ) proves the additivity of measure. Also we introduce (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Consistency results about filters and the number of inequivalent growth types.Andreas Blass & Claude Laflamme - 1989 - Journal of Symbolic Logic 54 (1):50-56.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Ramsey ultrafilters and the reaping number—con(r.M. Goldstern & S. Shelah - 1990 - Annals of Pure and Applied Logic 49 (2):121-142.
    We show that it is consistent that the reaping number r is less than u , the size of the smallest base for an ultrafilter. To show that our forcing preserves certain ultrafilters, we prove a general partition theorem involving Ramsey ideals.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Cofinalities of countable ultraproducts: The existence theorem.Michael Canjar - 1989 - Notre Dame Journal of Formal Logic 30:539-542.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • There may be simple Pℵ1 and Pℵ2-points and the Rudin-Keisler ordering may be downward directed.Andreas Blass & Saharon Shelah - 1987 - Annals of Pure and Applied Logic 33 (C):213-243.
    Download  
     
    Export citation  
     
    Bookmark   48 citations