Switch to: Citations

Add references

You must login to add references.
  1. Creature forcing and large continuum: the joy of halving.Jakob Kellner & Saharon Shelah - 2012 - Archive for Mathematical Logic 51 (1-2):49-70.
    For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f,g\in\omega^\omega}$$\end{document} let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c^\forall_{f,g}}$$\end{document} be the minimal number of uniform g-splitting trees needed to cover the uniform f-splitting tree, i.e., for every branch ν of the f-tree, one of the g-trees contains ν. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c^\exists_{f,g}}$$\end{document} be the dual notion: For every branch ν, one of the g-trees guesses ν(m) infinitely often. We show that (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Even more simple cardinal invariants.Jakob Kellner - 2008 - Archive for Mathematical Logic 47 (5):503-515.
    Using GCH, we force the following: There are continuum many simple cardinal characteristics with pairwise different values.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Many simple cardinal invariants.Martin Goldstern & Saharon Shelah - 1993 - Archive for Mathematical Logic 32 (3):203-221.
    Forg
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The cofinality of the strong measure zero ideal.Teruyuki Yorioka - 2002 - Journal of Symbolic Logic 67 (4):1373-1384.
    We give a characterization of the cofinality of the strong measure zero ideal under the continuum hypothesis and prove that we can force it to a value less than the power of the continuum.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The covering number and the uniformity of the ideal ℐf.Noboru Osuga - 2006 - Mathematical Logic Quarterly 52 (4):351-358.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The cardinal coefficients of the Ideal $${{\mathcal {I}}_{f}}$$.Noboru Osuga & Shizuo Kamo - 2008 - Archive for Mathematical Logic 47 (7-8):653-671.
    In 2002, Yorioka introduced the σ-ideal ${{\mathcal {I}}_f}$ for strictly increasing functions f from ω into ω to analyze the cofinality of the strong measure zero ideal. For each f, we study the cardinal coefficients (the additivity, covering number, uniformity and cofinality) of ${{\mathcal {I}}_f}$.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Decisive creatures and large continuum.Jakob Kellner & Saharon Shelah - 2009 - Journal of Symbolic Logic 74 (1):73-104.
    For f, g $ \in \omega ^\omega $ let $c_{f,g}^\forall $ be the minimal number of uniform g-splitting trees (or: Slaloms) to cover the uniform f-splitting tree, i.e., for every branch v of the f-tree, one of the g-trees contains v. $c_{f,g}^\exists $ is the dual notion: For every branch v, one of the g-trees guesses v(m) infinitely often. It is consistent that $c_{f \in ,g \in }^\exists = c_{f \in ,g \in }^\forall = k_ \in $ for N₁ many (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations