Switch to: References

Citations of:

Logic, Logic, and Logic

Cambridge, Mass: Harvard University Press. Edited by Richard C. Jeffrey (1998)

Add citations

You must login to add citations.
  1. How to Unify.Nicholas K. Jones - 2018 - Ergo: An Open Access Journal of Philosophy 5.
    This paper evaluates the argument for the contradictoriness of unity, that be- gins Priest’s recent book One. The argument is seen to fail because it does not adequately differentiate between different forms of unity. This diagnosis of the argument’s failure is used as a basis for two consistent accounts of unity. The paper concludes by arguing that reality contains two absolutely fundamental and unanalysable forms of unity, which are in principle presupposed by any theory of anything. These fundamental forms of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Natural Numbers and Natural Cardinals as Abstract Objects: A Partial Reconstruction of Frege"s Grundgesetze in Object Theory.Edward N. Zalta - 1999 - Journal of Philosophical Logic 28 (6):619-660.
    In this paper, the author derives the Dedekind-Peano axioms for number theory from a consistent and general metaphysical theory of abstract objects. The derivation makes no appeal to primitive mathematical notions, implicit definitions, or a principle of infinity. The theorems proved constitute an important subset of the numbered propositions found in Frege's *Grundgesetze*. The proofs of the theorems reconstruct Frege's derivations, with the exception of the claim that every number has a successor, which is derived from a modal axiom that (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • We hold these truths to be self-evident: But what do we mean by that?: We hold these truths to be self-evident.Stewart Shapiro - 2009 - Review of Symbolic Logic 2 (1):175-207.
    At the beginning of Die Grundlagen der Arithmetik [1884], Frege observes that “it is in the nature of mathematics to prefer proof, where proof is possible”. This, of course, is true, but thinkers differ on why it is that mathematicians prefer proof. And what of propositions for which no proof is possible? What of axioms? This talk explores various notions of self-evidence, and the role they play in various foundational systems, notably those of Frege and Zermelo. I argue that both (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Facets and Levels of Mathematical Abstraction.Hourya Benis Sinaceur - 2014 - Philosophia Scientiae 18 (1):81-112.
    Mathematical abstraction is the process of considering and ma­nipulating operations, rules, methods and concepts divested from their refe­rence to real world phenomena and circumstances, and also deprived from the content connected to particular applications. There is no one single way of per­forming mathematical abstraction. The term “abstraction” does not name a unique procedure but a general process, which goes many ways that are mostly simultaneous and intertwined; in particular, the process does not amount only to logical subsumption. I will consider (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The good, the bad and the ugly.Philip Ebert & Stewart Shapiro - 2009 - Synthese 170 (3):415-441.
    This paper discusses the neo-logicist approach to the foundations of mathematics by highlighting an issue that arises from looking at the Bad Company objection from an epistemological perspective. For the most part, our issue is independent of the details of any resolution of the Bad Company objection and, as we will show, it concerns other foundational approaches in the philosophy of mathematics. In the first two sections, we give a brief overview of the "Scottish" neo-logicist school, present a generic form (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Frege, Dedekind, and the Modern Epistemology of Arithmetic.Markus Pantsar - 2016 - Acta Analytica 31 (3):297-318.
    In early analytic philosophy, one of the most central questions concerned the status of arithmetical objects. Frege argued against the popular conception that we arrive at natural numbers with a psychological process of abstraction. Instead, he wanted to show that arithmetical truths can be derived from the truths of logic, thus eliminating all psychological components. Meanwhile, Dedekind and Peano developed axiomatic systems of arithmetic. The differences between the logicist and axiomatic approaches turned out to be philosophical as well as mathematical. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Transfinite recursion and computation in the iterative conception of set.Benjamin Rin - 2015 - Synthese 192 (8):2437-2462.
    Transfinite recursion is an essential component of set theory. In this paper, we seek intrinsically justified reasons for believing in recursion and the notions of higher computation that surround it. In doing this, we consider several kinds of recursion principles and prove results concerning their relation to one another. We then consider philosophical motivations for these formal principles coming from the idea that computational notions lie at the core of our conception of set. This is significant because, while the iterative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Stuff and coincidence.Thomas J. McKay - 2015 - Philosophical Studies 172 (11):3081-3100.
    Anyone who admits the existence of composite objects allows a certain kind of coincidence, coincidence of a thing with its parts. I argue here that a similar sort of coincidence, coincidence of a thing with the stuff that constitutes it, should be equally acceptable. Acknowledgement of this is enough to solve the traditional problem of the coincidence of a statue and the clay or bronze it is made of. In support of this, I offer some principles for the persistence of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Unrestricted Quantification.Salvatore Florio - 2014 - Philosophy Compass 9 (7):441-454.
    Semantic interpretations of both natural and formal languages are usually taken to involve the specification of a domain of entities with respect to which the sentences of the language are to be evaluated. A question that has received much attention of late is whether there is unrestricted quantification, quantification over a domain comprising absolutely everything there is. Is there a discourse or inquiry that has absolute generality? After framing the debate, this article provides an overview of the main arguments for (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The right to believe truth paradoxes of moral regret for no belief and the role(s) of logic in philosophy of religion.Billy Joe Lucas - 2012 - International Journal for Philosophy of Religion 72 (2):115-138.
    I offer you some theories of intellectual obligations and rights (virtue Ethics): initially, RBT (a Right to Believe Truth, if something is true it follows one has a right to believe it), and, NDSM (one has no right to believe a contradiction, i.e., No right to commit Doxastic Self-Mutilation). Evidence for both below. Anthropology, Psychology, computer software, Sociology, and the neurosciences prove things about human beliefs, and History, Economics, and comparative law can provide evidence of value about theories of rights. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logical Constants: A Modalist Approach 1.Otávio Bueno & Scott A. Shalkowski - 2013 - Noûs 47 (1):1-24.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Interface transparency and the psychosemantics of most.Jeffrey Lidz, Paul Pietroski, Tim Hunter & Justin Halberda - 2011 - Natural Language Semantics 19 (3):227-256.
    This paper proposes an Interface Transparency Thesis concerning how linguistic meanings are related to the cognitive systems that are used to evaluate sentences for truth/falsity: a declarative sentence S is semantically associated with a canonical procedure for determining whether S is true; while this procedure need not be used as a verification strategy, competent speakers are biased towards strategies that directly reflect canonical specifications of truth conditions. Evidence in favor of this hypothesis comes from a psycholinguistic experiment examining adult judgments (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Concepts, meanings and truth: First nature, second nature and hard work.Paul M. Pietroski - 2010 - Mind and Language 25 (3):247-278.
    I argue that linguistic meanings are instructions to build monadic concepts that lie between lexicalizable concepts and truth-evaluable judgments. In acquiring words, humans use concepts of various adicities to introduce concepts that can be fetched and systematically combined via certain conjunctive operations, which require monadic inputs. These concepts do not have Tarskian satisfaction conditions. But they provide bases for refinements and elaborations that can yield truth-evaluable judgments. Constructing mental sentences that are true or false requires cognitive work, not just an (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Russell, His Paradoxes, and Cantor's Theorem: Part I.Kevin C. Klement - 2010 - Philosophy Compass 5 (1):16-28.
    In these articles, I describe Cantor’s power-class theorem, as well as a number of logical and philosophical paradoxes that stem from it, many of which were discovered or considered (implicitly or explicitly) in Bertrand Russell’s work. These include Russell’s paradox of the class of all classes not members of themselves, as well as others involving properties, propositions, descriptive senses, class-intensions, and equivalence classes of coextensional properties. Part I focuses on Cantor’s theorem, its proof, how it can be used to manufacture (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Russell, His Paradoxes, and Cantor's Theorem: Part II.Kevin C. Klement - 2010 - Philosophy Compass 5 (1):29-41.
    Sequel to Part I. In these articles, I describe Cantor’s power-class theorem, as well as a number of logical and philosophical paradoxes that stem from it, many of which were discovered or considered (implicitly or explicitly) in Bertrand Russell’s work. These include Russell’s paradox of the class of all classes not members of themselves, as well as others involving properties, propositions, descriptive senses, class-intensions and equivalence classes of coextensional properties. Part II addresses Russell’s own various attempts to solve these paradoxes, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On Naturalizing the Epistemology of Mathematics.Jeffrey W. Roland - 2009 - Pacific Philosophical Quarterly 90 (1):63-97.
    In this paper, I consider an argument for the claim that any satisfactory epistemology of mathematics will violate core tenets of naturalism, i.e. that mathematics cannot be naturalized. I find little reason for optimism that the argument can be effectively answered.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Open-endedness, schemas and ontological commitment.Nikolaj Jang Lee Linding Pedersen & Marcus Rossberg - 2010 - Noûs 44 (2):329-339.
    Second-order axiomatizations of certain important mathematical theories—such as arithmetic and real analysis—can be shown to be categorical. Categoricity implies semantic completeness, and semantic completeness in turn implies determinacy of truth-value. Second-order axiomatizations are thus appealing to realists as they sometimes seem to offer support for the realist thesis that mathematical statements have determinate truth-values. The status of second-order logic is a controversial issue, however. Worries about ontological commitment have been influential in the debate. Recently, Vann McGee has argued that one (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Quantifying weak emergence.Paul Hovda - 2008 - Minds and Machines 18 (4):461-473.
    The concept of weak emergence is a refinement or specification of the intuitive, general notion of emergence. Basically, a fact about a system is said to be weakly emergent if its holding both (i) is derivable from the fundamental laws of the system together with some set of basic (non-emergent) facts about it, and yet (ii) is only derivable in a particular manner, called “simulation.” This essay analyzes the application of this notion Conway’s Game of Life, and concludes that a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A Taxonomy for Set-Theoretic Potentialism.Davide Sutto - 2024 - Philosophia Mathematica:1-28.
    Set-theoretic potentialism is one of the most lively trends in the philosophy of mathematics. Modal accounts of sets have been developed in two different ways. The first, initiated by Charles Parsons, focuses on sets as objects. The second, dating back to Hilary Putnam and Geoffrey Hellman, investigates set-theoretic structures. The paper identifies two strands of open issues, technical and conceptual, to clarify these two different, yet often conflated, views and categorize the potentialist approaches that have emerged in the contemporary debate. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Logic and ontology.Thomas Hofweber - 2005 - Stanford Encyclopedia of Philosophy.
    A number of important philosophical problems are problems in the overlap of logic and ontology. Both logic and ontology are diverse fields within philosophy, and partly because of this there is not one single philosophical problem about the relation between logic and ontology. In this survey article we will first discuss what different philosophical projects are carried out under the headings of "logic" and "ontology" and then we will look at several areas where logic and ontology overlap.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Ramified Frege Arithmetic.Richard G. Heck - 2011 - Journal of Philosophical Logic 40 (6):715-735.
    Øystein Linnebo has recently shown that the existence of successors cannot be proven in predicative Frege arithmetic, using Frege’s definitions of arithmetical notions. By contrast, it is shown here that the existence of successor can be proven in ramified predicative Frege arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • ‘Now’ and ‘Then’ in Tense Logic.Ulrich Meyer - 2009 - Journal of Philosophical Logic 38 (2):229-247.
    According to Hans Kamp and Frank Vlach, the two-dimensional tense operators “now” and “then” are ineliminable in quantified tense logic. This is often adduced as an argument against tense logic, and in favor of an extensional account that makes use of explicit quantification over times. The aim of this paper is to defend tense logic against this attack. It shows that “now” and “then” are eliminable in quantified tense logic, provided we endow it with enough quantificational structure. The operators might (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Plural quantification exposed.Øystein Linnebo - 2003 - Noûs 37 (1):71–92.
    This paper criticizes George Boolos's famous use of plural quantification to argue that monadic second-order logic is pure logic. I deny that plural quantification qualifies as pure logic and express serious misgivings about its alleged ontological innocence. My argument is based on an examination of what is involved in our understanding of the impredicative plural comprehension schema.
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Grammar and sets.B. H. Slater - 2006 - Australasian Journal of Philosophy 84 (1):59 – 73.
    'Philosophy arises through misconceptions of grammar', said Wittgenstein. Few people have believed him, and probably none, therefore, working in the area of the philosophy of mathematics. Yet his assertion is most evidently the case in the philosophy of Set Theory, as this paper demonstrates (see also Rodych 2000). The motivation for twentieth century Set Theory has rested on the belief that everything in Mathematics can be defined in terms of sets [Maddy 1994: 4]. But not only are there notable items (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Neo-fregeanism and quantifier variance.Theodore Sider - 2007 - Aristotelian Society Supplementary Volume 81 (1):201–232.
    NeoFregeanism is an intriguing but elusive philosophy of mathematical existence. At crucial points, it goes cryptic and metaphorical. I want to put forward an interpretation of neoFregeanism—perhaps not one that actual neoFregeans will embrace—that makes sense of much of what they say. NeoFregeans should embrace quantifier variance.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Neo-Fregean ontology.Matti Eklund - 2006 - Philosophical Perspectives 20 (1):95-121.
    Neo-Fregeanism in the philosophy of mathematics consists of two main parts: the logicist thesis, that mathematics (or at least branches thereof, like arithmetic) all but reduce to logic, and the platonist thesis, that there are abstract, mathematical objects. I will here focus on the ontological thesis, platonism. Neo-Fregeanism has been widely discussed in recent years. Mostly the discussion has focused on issues specific to mathematics. I will here single out for special attention the view on ontology which underlies the neo-Fregeans’ (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Arithmetic without the successor axiom.Andrew Boucher -
    Second-order Peano Arithmetic minus the Successor Axiom is developed from first principles through Quadratic Reciprocity and a proof of self-consistency. This paper combines 4 other papers of the author in a self-contained exposition.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • L’existence des objets logiques selon Frege.François Rivenc - 2003 - Dialogue 42 (2):291-320.
    Un trait du langage qui menace de saper la sûreté de la pensée est sa tendance à former des noms propres auxquels aucun objet ne correspond. [...] Un exemple particulièrement remarquable de cela est la formation d’un nom propre selon le schéma «l’extension du concept a», par exemple «l’extension du concept étoile». À cause de l’article défini, cette expression semble désigner un objet; mais il n’y a aucun objet pour lequel cette expression pour-rait être une désignation appropriée. De là les (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Predicativity, the Russell-Myhill Paradox, and Church’s Intensional Logic.Sean Walsh - 2016 - Journal of Philosophical Logic 45 (3):277-326.
    This paper sets out a predicative response to the Russell-Myhill paradox of propositions within the framework of Church’s intensional logic. A predicative response places restrictions on the full comprehension schema, which asserts that every formula determines a higher-order entity. In addition to motivating the restriction on the comprehension schema from intuitions about the stability of reference, this paper contains a consistency proof for the predicative response to the Russell-Myhill paradox. The models used to establish this consistency also model other axioms (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Introduction.Øystein Linnebo - 2009 - Synthese 170 (3):321-329.
    Neo-Fregean logicism seeks to base mathematics on abstraction principles. But the acceptable abstraction principles are surrounded by unacceptable ones. This is the "bad company problem." In this introduction I first provide a brief historical overview of the problem. Then I outline the main responses that are currently being debated. In the course of doing so I provide summaries of the contributions to this special issue.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Framing Event Variables.Paul M. Pietroski - 2015 - Erkenntnis 80 (1):31-60.
    Davidsonian analyses of action reports like ‘Alvin chased Theodore around a tree’ are often viewed as supporting the hypothesis that sentences of a human language H have truth conditions that can be specified by a Tarski-style theory of truth for H. But in my view, simple cases of adverbial modification add to the reasons for rejecting this hypothesis, even though Davidson rightly diagnosed many implications involving adverbs as cases of conjunct-reduction in the scope of an existential quantifier. I think the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Is There a Philosophy of Information?Fred Adams & João Antonio de Moraes - 2016 - Topoi 35 (1):161-171.
    In 2002, Luciano Floridi published a paper called What is the Philosophy of Information?, where he argues for a new paradigm in philosophical research. To what extent should his proposal be accepted? Is the Philosophy of Information actually a new paradigm, in the Kuhninan sense, in Philosophy? Or is it only a new branch of Epistemology? In our discussion we will argue in defense of Floridi’s proposal. We believe that Philosophy of Information has the types of features had by other (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Frege, Dedekind, and the Origins of Logicism.Erich H. Reck - 2013 - History and Philosophy of Logic 34 (3):242-265.
    This paper has a two-fold objective: to provide a balanced, multi-faceted account of the origins of logicism; to rehabilitate Richard Dedekind as a main logicist. Logicism should be seen as more deeply rooted in the development of modern mathematics than typically assumed, and this becomes evident by reconsidering Dedekind's writings in relation to Frege's. Especially in its Dedekindian and Fregean versions, logicism constitutes the culmination of the rise of ?pure mathematics? in the nineteenth century; and this rise brought with it (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Somehow Things Do Not Relate: On the Interpretation of Polyadic Second-Order Logic.Marcus Rossberg - 2015 - Journal of Philosophical Logic 44 (3):341-350.
    Boolos has suggested a plural interpretation of second-order logic for two purposes: to escape Quine’s allegation that second-order logic is set theory in disguise, and to avoid the paradoxes arising if the second-order variables are given a set-theoretic interpretation in second-order set theory. Since the plural interpretation accounts only for monadic second-order logic, Rayo and Yablo suggest an new interpretation for polyadic second-order logic in a Boolosian spirit. The present paper argues that Rayo and Yablo’s interpretation does not achieve the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Replies to Dorr, Fine, and Hirsch.Theodore Sider - 2013 - Philosophy and Phenomenological Research 87 (3):733-754.
    This is a symposium on my book, Writing the Book of the World, containing a precis from me, criticisms from Dorr, Fine, and Hirsch, and replies by me.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The Graph Conception of Set.Luca Incurvati - 2014 - Journal of Philosophical Logic 43 (1):181-208.
    The non-well-founded set theories described by Aczel (1988) have received attention from category theorists and computer scientists, but have been largely ignored by philosophers. At the root of this neglect might lie the impression that these theories do not embody a conception of set, but are rather of mere technical interest. This paper attempts to dispel this impression. I present a conception of set which may be taken as lying behind a non-well-founded set theory. I argue that the axiom AFA (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Metaontological Minimalism.Øystein Linnebo - 2012 - Philosophy Compass 7 (2):139-151.
    Can there be objects that are ‘thin’ in the sense that very little is required for their existence? A number of philosophers have thought so. For instance, many Fregeans believe it suffices for the existence of directions that there be lines standing in the relation of parallelism; other philosophers believe it suffices for a mathematical theory to have a model that the theory be coherent. This article explains the appeal of thin objects, discusses the three most important strategies for articulating (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Worlds and Propositions Set Free.Otávio Bueno, Christopher Menzel & Edward N. Zalta - 2014 - Erkenntnis 79 (4):797–820.
    The authors provide an object-theoretic analysis of two paradoxes in the theory of possible worlds and propositions stemming from Russell and Kaplan. After laying out the paradoxes, the authors provide a brief overview of object theory and point out how syntactic restrictions that prevent object-theoretic versions of the classical paradoxes are justified philosophically. The authors then trace the origins of the Russell paradox to a problematic application of set theory in the definition of worlds. Next the authors show that an (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A Defense of Second-Order Logic.Otávio Bueno - 2010 - Axiomathes 20 (2-3):365-383.
    Second-order logic has a number of attractive features, in particular the strong expressive resources it offers, and the possibility of articulating categorical mathematical theories (such as arithmetic and analysis). But it also has its costs. Five major charges have been launched against second-order logic: (1) It is not axiomatizable; as opposed to first-order logic, it is inherently incomplete. (2) It also has several semantics, and there is no criterion to choose between them (Putnam, J Symbol Logic 45:464–482, 1980 ). Therefore, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Note on the Relation Between Formal and Informal Proof.Jörgen Sjögren - 2010 - Acta Analytica 25 (4):447-458.
    Using Carnap’s concept explication, we propose a theory of concept formation in mathematics. This theory is then applied to the problem of how to understand the relation between the concepts formal proof and informal, mathematical proof.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The meaning of 'most': Semantics, numerosity and psychology.Paul Pietroski, Jeffrey Lidz, Tim Hunter & Justin Halberda - 2009 - Mind and Language 24 (5):554-585.
    The meaning of 'most' can be described in many ways. We offer a framework for distinguishing semantic descriptions, interpreted as psychological hypotheses that go beyond claims about sentential truth conditions, and an experiment that tells against an attractive idea: 'most' is understood in terms of one-to-one correspondence. Adults evaluated 'Most of the dots are yellow', as true or false, on many trials in which yellow dots and blue dots were displayed for 200 ms. Displays manipulated the ease of using a (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Concept grounding and knowledge of set theory.Jeffrey W. Roland - 2010 - Philosophia 38 (1):179-193.
    C. S. Jenkins has recently proposed an account of arithmetical knowledge designed to be realist, empiricist, and apriorist: realist in that what’s the case in arithmetic doesn’t rely on us being any particular way; empiricist in that arithmetic knowledge crucially depends on the senses; and apriorist in that it accommodates the time-honored judgment that there is something special about arithmetical knowledge, something we have historically labeled with ‘a priori’. I’m here concerned with the prospects for extending Jenkins’s account beyond arithmetic—in (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Gottlob Frege.Edward N. Zalta - 2008 - Stanford Encyclopedia of Philosophy.
    This entry introduces the reader to the main ideas in Frege's philosophy of logic, mathematics, and language.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Philosophy of mathematics.Leon Horsten - 2008 - Stanford Encyclopedia of Philosophy.
    If mathematics is regarded as a science, then the philosophy of mathematics can be regarded as a branch of the philosophy of science, next to disciplines such as the philosophy of physics and the philosophy of biology. However, because of its subject matter, the philosophy of mathematics occupies a special place in the philosophy of science. Whereas the natural sciences investigate entities that are located in space and time, it is not at all obvious that this is also the case (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Quantification and realism.Michael Glanzberg - 2004 - Philosophy and Phenomenological Research 69 (3):541–572.
    This paper argues for the thesis that, roughly put, it is impossible to talk about absolutely everything. To put the thesis more precisely, there is a particular sense in which, as a matter of semantics, quantifiers always range over domains that are in principle extensible, and so cannot count as really being ‘absolutely everything’. The paper presents an argument for this thesis, and considers some important objections to the argument and to the formulation of the thesis. The paper also offers (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Bad company generalized.Gabriel Uzquiano - 2009 - Synthese 170 (3):331 - 347.
    The paper is concerned with the bad company problem as an instance of a more general difficulty in the philosophy of mathematics. The paper focuses on the prospects of stability as a necessary condition on acceptability. However, the conclusion of the paper is largely negative. As a solution to the bad company problem, stability would undermine the prospects of a neo-Fregean foundation for set theory, and, as a solution to the more general difficulty, it would impose an unreasonable constraint on (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Ontological commitment.Agustín Rayo - 2007 - Philosophy Compass 2 (3):428–444.
    I propose a way of thinking aboout content, and a related way of thinking about ontological commitment. (This is part of a series of four closely related papers. The other three are ‘On Specifying Truth-Conditions’, ‘An Actualist’s Guide to Quantifying In’ and ‘An Account of Possibility’.).
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Interpreting concatenation and concatenates.Paul M. Pietroski - 2006 - Philosophical Issues 16 (1):221–245.
    This paper presents a slightly modified version of the compositional semantics proposed in Events and Semantic Architecture (OUP 2005). Some readers may find this shorter version, which ignores issues about vagueness and causal constructions, easier to digest. The emphasis is on the treatments of plurality and quantification, and I assume at least some familiarity with more standard approaches.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Price of Universality.Gabriel Uzquiano - 2006 - Philosophical Studies 129 (1):137-169.
    I present a puzzle for absolutely unrestricted quantification. One important advantage of absolutely unrestricted quantification is that it allows us to entertain perfectly general theories. Whereas most of our theories restrict attention to one or another parcel of reality, other theories are genuinely comprehensive taking absolutely all objects into their domain. The puzzle arises when we notice that absolutely unrestricted theories sometimes impose incompatible constraints on the size of the universe.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Plural quantifiers: a modal interpretation.Rafal Urbaniak - 2014 - Synthese 191 (7):1-22.
    One of the standard views on plural quantification is that its use commits one to the existence of abstract objects–sets. On this view claims like ‘some logicians admire only each other’ involve ineliminable quantification over subsets of a salient domain. The main motivation for this view is that plural quantification has to be given some sort of semantics, and among the two main candidates—substitutional and set-theoretic—only the latter can provide the language of plurals with the desired expressive power (given that (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations