Switch to: Citations

Add references

You must login to add references.
  1. Philosophy of mathematics, selected readings.Paul Benacerraf & Hilary Putnam - 1966 - Revue Philosophique de la France Et de l'Etranger 156:501-502.
    Download  
     
    Export citation  
     
    Bookmark   110 citations  
  • Philosophy of Logic.Hilary Putnam - 1971 - New York, NY, USA: Routledge. Edited by Stephen Laurence & Cynthia Macdonald.
    First published in 1971, Professor Putnam's essay concerns itself with the ontological problem in the philosophy of logic and mathematics - that is, the issue of whether the abstract entities spoken of in logic and mathematics really exist. He also deals with the question of whether or not reference to these abstract entities is really indispensible in logic and whether it is necessary in physical science in general.
    Download  
     
    Export citation  
     
    Bookmark   164 citations  
  • Science Without Numbers: A Defence of Nominalism.Hartry H. Field - 1980 - Princeton, NJ, USA: Princeton University Press.
    Science Without Numbers caused a stir in 1980, with its bold nominalist approach to the philosophy of mathematics and science. It has been unavailable for twenty years and is now reissued in a revised edition with a substantial new preface presenting the author's current views and responses to the issues raised in subsequent debate.
    Download  
     
    Export citation  
     
    Bookmark   559 citations  
  • From a Logical Point of View.Willard Van Orman Quine - 1953 - Cambridge: Harvard University Press.
    Several of these essays have been printed whole in journals; others are in varying degrees new. Two main themes run through them. One is the problem of meaning, particularly as involved in the notion of an analytic statement. The other is the notion of ontological, commitment, particularly as involved in the problem of universals.
    Download  
     
    Export citation  
     
    Bookmark   864 citations  
  • The application of mathematics to natural science.Mark Steiner - 1989 - Journal of Philosophy 86 (9):449-480.
    The first part of the essay describes how mathematics, in particular mathematical concepts, are applicable to nature. mathematical constructs have turned out to correspond to physical reality. this correlation between the world and mathematical concepts, it is argued, is a true phenomenon. the second part of this essay argues that the applicability of mathematics to nature is mysterious, in that not only is there no known explanation for the correlation between mathematics and physical reality, but there is a good reason (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • (3 other versions)Philosophy of Mathematics: Selected Readings.Paul Benacerraf & Hilary Putnam (eds.) - 1964 - Englewood Cliffs, NJ, USA: Cambridge University Press.
    The twentieth century has witnessed an unprecedented 'crisis in the foundations of mathematics', featuring a world-famous paradox, a challenge to 'classical' mathematics from a world-famous mathematician, a new foundational school, and the profound incompleteness results of Kurt Gödel. In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably with Bertrand Russell, W. V. Quine, and Gödel himself, and which remains at the focus of Anglo-Saxon philosophical discussion. The present collection (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Mathematics Without Numbers: Towards a Modal-Structural Interpretation.Geoffrey Hellman - 1989 - Oxford, England: Oxford University Press.
    Develops a structuralist understanding of mathematics, as an alternative to set- or type-theoretic foundations, that respects classical mathematical truth while ...
    Download  
     
    Export citation  
     
    Bookmark   263 citations  
  • Constructibility and mathematical existence.Charles S. Chihara - 1990 - New York: Oxford University Press.
    This book is concerned with `the problem of existence in mathematics'. It develops a mathematical system in which there are no existence assertions but only assertions of the constructibility of certain sorts of things. It explores the philosophical implications of such an approach through an examination of the writings of Field, Burgess, Maddy, Kitcher, and others.
    Download  
     
    Export citation  
     
    Bookmark   106 citations  
  • Mathematics, explanation, and scientific knowledge.Mark Steiner - 1978 - Noûs 12 (1):17-28.
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • Mathematics and indispensability.Elliott Sober - 1993 - Philosophical Review 102 (1):35-57.
    Realists persuaded by indispensability arguments af- firm the existence of numbers, genes, and quarks. Van Fraassen's empiricism remains agnostic with respect to all three. The point of agreement is that the posits of mathematics and the posits of biology and physics stand orfall together. The mathematical Platonist can take heart from this consensus; even if the existence of num- bers is still problematic, it seems no more problematic than the existence of genes or quarks. If the two positions just described (...)
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  • Indispensability and Practice.Penelope Maddy - 1992 - Journal of Philosophy 89 (6):275.
    Download  
     
    Export citation  
     
    Bookmark   132 citations  
  • From a Logical Point of View. [REVIEW]J. J. C. Smart - 1955 - Australasian Journal of Philosophy 33:45.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Theories and Things. [REVIEW]J. Ben - 1982 - Review of Metaphysics 36 (1):184-184.
    "Our scientific theory can indeed go wrong," writes Quine, "and precisely in the familiar way: through failure of predicted observation. But what if, happily and unbeknownst, we have achieved a theory that is conformable to every possible observation, past and future? In what sense could the world then be said to deviate from what the theory claims? Clearly in none....".
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Between Mathematics and Physics.Michael D. Resnik - 1990 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1990:369 - 378.
    Nothing has been more central to philosophy of mathematics than the distinction between mathematical and physical objects. Yet consideration of quantum particles shows the inadequacy of the popular spacetime and causal characterizations of the distinction. It also raises problems for an assumption used recently by Field, Hellman and Horgan, namely, that the mathematical realm is metaphysically independent of the physical one.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Symposium: On What there is.P. T. Geach, A. J. Ayer & W. V. Quine - 1948 - Aristotelian Society Supplementary Volume 25 (1):125-160.
    Download  
     
    Export citation  
     
    Bookmark   304 citations  
  • Theories and Things. [REVIEW] J. - 1982 - Review of Metaphysics 36 (1):184-184.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quine and Mathematical Reduction.Mark Steiner - 1978 - Southwestern Journal of Philosophy 9 (2):133-143.
    Quine has expressed the view that the reduction of one mathematical theory to another is merely the "modeling" of the one in the other. i argue that, just as in the physical sciences, some reductions "explain" the phenomena they reduce in addition to "modeling" them; and that, conversely, "modeling" one theory in another may actually destroy the explanatory value of the former.
    Download  
     
    Export citation  
     
    Bookmark   4 citations