Switch to: References

Add citations

You must login to add citations.
  1. A Scheme Foiled: A Critique of Baron's Account of Extra-mathematical Explanation.Mark Povich - 2023 - Mind 132 (526):479–492.
    Extra-mathematical explanations explain natural phenomena primarily by appeal to mathematical facts. Philosophers disagree about whether there are extra-mathematical explanations, the correct account of them if they exist, and their implications (e.g., for the philosophy of scientific explanation and for the metaphysics of mathematics) (Baker 2005, 2009; Bangu 2008; Colyvan 1998; Craver and Povich 2017; Lange 2013, 2016, 2018; Mancosu 2008; Povich 2019, 2020; Steiner 1978). In this discussion note, I present three desiderata for any account of extra-mathematical explanation and argue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Narrow Ontic Counterfactual Account of Distinctively Mathematical Explanation.Mark Povich - 2021 - British Journal for the Philosophy of Science 72 (2):511-543.
    An account of distinctively mathematical explanation (DME) should satisfy three desiderata: it should account for the modal import of some DMEs; it should distinguish uses of mathematics in explanation that are distinctively mathematical from those that are not (Baron [2016]); and it should also account for the directionality of DMEs (Craver and Povich [2017]). Baron’s (forthcoming) deductive-mathematical account, because it is modelled on the deductive-nomological account, is unlikely to satisfy these desiderata. I provide a counterfactual account of DME, the Narrow (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (1 other version)Mathematical Explanations of Physical Phenomena.Sorin Bangu - 2021 - Australasian Journal of Philosophy 99 (4):669-682.
    Can there be mathematical explanations of physical phenomena? In this paper, I suggest an affirmative answer to this question. I outline a strategy to reconstruct several typical examples of such explanations, and I show that they fit a common model. The model reveals that the role of mathematics is explicatory. Isolating this role may help to re-focus the current debate on the more specific question as to whether this explicatory role is, as proposed here, also an explanatory one.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mathematical Explanation beyond Explanatory Proof.William D’Alessandro - 2017 - British Journal for the Philosophy of Science 71 (2):581-603.
    Much recent work on mathematical explanation has presupposed that the phenomenon involves explanatory proofs in an essential way. I argue that this view, ‘proof chauvinism’, is false. I then look in some detail at the explanation of the solvability of polynomial equations provided by Galois theory, which has often been thought to revolve around an explanatory proof. The article concludes with some general worries about the effects of chauvinism on the theory of mathematical explanation. 1Introduction 2Why I Am Not a (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Teaching and Learning Guide for: Explanation in Mathematics: Proofs and Practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11):e12629.
    This is a teaching and learning guide to accompany "Explanation in Mathematics: Proofs and Practice".
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Explanation in mathematics: Proofs and practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11):e12629.
    Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if so, how do (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Counterfactual Scheming.Sam Baron - 2020 - Mind 129 (514):535-562.
    Mathematics appears to play a genuine explanatory role in science. But how do mathematical explanations work? Recently, a counterfactual approach to mathematical explanation has been suggested. I argue that such a view fails to differentiate the explanatory uses of mathematics within science from the non-explanatory uses. I go on to offer a solution to this problem by combining elements of the counterfactual theory of explanation with elements of a unification theory of explanation. The result is a theory according to which (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • O nouă filosofie a matematicii?Gabriel Târziu - 2012 - Symposion – A Journal of Humanities 10 (2):361-377.
    O tendinţă relativ nouă în filosofia contemporană a matematicii este reprezentată de nemulţumirea manifestată de un număr din ce în ce mai mare de filosofi faţă de viziunea tradiţională asupra matematicii ca având un statut special ce poate fi surprins doar cu ajutorul unei epistemologii speciale. Această nemulţumire i-a determinat pe mulţi să propună o nouă perspectivă asupra matematicii – una care ia în serios aspecte până acum neglijate de filosofia matematicii, precum latura sociologică, istorică şi empirică a cercetării matematice (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Explanations and the Piecemeal Approach to Thinking About Explanation.Gabriel Târziu - 2018 - Logique Et Analyse 61 (244):457-487.
    A new trend in the philosophical literature on scientific explanation is that of starting from a case that has been somehow identified as an explanation and then proceed to bringing to light its characteristic features and to constructing an account for the type of explanation it exemplifies. A type of this approach to thinking about explanation – the piecemeal approach, as I will call it – is used, among others, by Lange (2013) and Pincock (2015) in the context of their (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Importance and Explanatory Relevance: The Case of Mathematical Explanations.Gabriel Târziu - 2018 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 49 (3):393-412.
    A way to argue that something plays an explanatory role in science is by linking explanatory relevance with importance in the context of an explanation. The idea is deceptively simple: a part of an explanation is an explanatorily relevant part of that explanation if removing it affects the explanation either by destroying it or by diminishing its explanatory power, i.e. an important part is an explanatorily relevant part. This can be very useful in many ontological debates. My aim in this (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Applicability of Mathematics to Physical Modality.Nora Berenstain - 2017 - Synthese 194 (9):3361-3377.
    This paper argues that scientific realism commits us to a metaphysical determination relation between the mathematical entities that are indispensible to scientific explanation and the modal structure of the empirical phenomena those entities explain. The argument presupposes that scientific realism commits us to the indispensability argument. The viewpresented here is that the indispensability of mathematics commits us not only to the existence of mathematical structures and entities but to a metaphysical determination relation between those entities and the modal structure of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Oxford Handbook of Philosophical Methodology.Herman Cappelen, Tamar Gendler & John Hawthorne (eds.) - 2016 - Oxford, United Kingdom: Oxford University Press.
    This is the most comprehensive book ever published on philosophical methodology. A team of thirty-eight of the world's leading philosophers present original essays on various aspects of how philosophy should be and is done. The first part is devoted to broad traditions and approaches to philosophical methodology. The entries in the second part address topics in philosophical methodology, such as intuitions, conceptual analysis, and transcendental arguments. The third part of the book is devoted to essays about the interconnections between philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Explaining simulated phenomena. A defense of the epistemic power of computer simulations.Juan M. Durán - 2013 - Dissertation, University of Stuttgart
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Using Mathematics to Explain a Scientific Theory.Michèle Friend & Daniele Molinini - 2016 - Philosophia Mathematica 24 (2):185-213.
    We answer three questions: 1. Can we give a wholly mathematical explanation of a physical phenomenon? 2. Can we give a wholly mathematical explanation for a whole physical theory? 3. What is gained or lost in giving a wholly, or partially, mathematical explanation of a phenomenon or a scientific theory? To answer these questions we look at a project developed by Hajnal Andréka, Judit Madarász, István Németi and Gergely Székely. They, together with collaborators, present special relativity theory in a three-sorted (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Parsimony and inference to the best mathematical explanation.Alan Baker - 2016 - Synthese 193 (2).
    Indispensability-based arguments for mathematical platonism are typically motivated by drawing an analogy between abstract mathematical objects and concrete scientific posits. In this paper, I argue that mathematics can sometimes help to reduce our concrete ontological, ideological, and structural commitments. My focus is on optimization explanations, and in particular the case study involving periodical cicadas. I argue that in this case, stronger mathematical apparatus yields explanations that have fewer concrete commitments. The nominalist cannot accept these more parsimonious explanations without embracing the (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Theoretical Identities as Explanantia and Explananda.Kevin Morris - 2011 - American Philosophical Quarterly 48 (4):373-385.
    The mind-brain identity theory, the thesis that sensations are identical with properties or processes of the brain, was introduced into contemporary discussion by U.T. Place, Herbert Feigl, and J.J.C Smart in the 1950s. Despite its widespread rejection in the following decades, the identity theory has received several carefully articulated defenses in recent years. Aside from developing novel responses to well-known arguments against the identity theory, contemporary identity theorists have argued that the epistemological resources available to support the adoption of identities (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Plato's Problem: An Introduction to Mathematical Platonism.Marco Panza & Andrea Sereni - 2013 - New York: Palgrave-Macmillan. Edited by Andrea Sereni & Marco Panza.
    What is mathematics about? And if it is about some sort of mathematical reality, how can we have access to it? This is the problem raised by Plato, which still today is the subject of lively philosophical disputes. This book traces the history of the problem, from its origins to its contemporary treatment. It discusses the answers given by Aristotle, Proclus and Kant, through Frege's and Russell's versions of logicism, Hilbert's formalism, Gödel's platonism, up to the the current debate on (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • What Makes a Scientific Explanation Distinctively Mathematical?Marc Lange - 2013 - British Journal for the Philosophy of Science 64 (3):485-511.
    Certain scientific explanations of physical facts have recently been characterized as distinctively mathematical –that is, as mathematical in a different way from ordinary explanations that employ mathematics. This article identifies what it is that makes some scientific explanations distinctively mathematical and how such explanations work. These explanations are non-causal, but this does not mean that they fail to cite the explanandum’s causes, that they abstract away from detailed causal histories, or that they cite no natural laws. Rather, in these explanations, (...)
    Download  
     
    Export citation  
     
    Bookmark   173 citations  
  • Mathematical Explanations Of Empirical Facts, And Mathematical Realism.Aidan Lyon - 2012 - Australasian Journal of Philosophy 90 (3):559-578.
    A main thread of the debate over mathematical realism has come down to whether mathematics does explanatory work of its own in some of our best scientific explanations of empirical facts. Realists argue that it does; anti-realists argue that it doesn't. Part of this debate depends on how mathematics might be able to do explanatory work in an explanation. Everyone agrees that it's not enough that there merely be some mathematics in the explanation. Anti-realists claim there is nothing mathematics can (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Epistemological objections to platonism.David Liggins - 2010 - Philosophy Compass 5 (1):67-77.
    Many philosophers posit abstract entities – where something is abstract if it is acausal and lacks spatio-temporal location. Theories, types, characteristics, meanings, values and responsibilities are all good candidates for abstractness. Such things raise an epistemological puzzle: if they are abstract, then how can we have any epistemic access to how they are? If they are invisible, intangible and never make anything happen, then how can we ever discover anything about them? In this article, I critically examine epistemological objections to (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Indispensability arguments in the philosophy of mathematics.Mark Colyvan - 2008 - Stanford Encyclopedia of Philosophy.
    One of the most intriguing features of mathematics is its applicability to empirical science. Every branch of science draws upon large and often diverse portions of mathematics, from the use of Hilbert spaces in quantum mechanics to the use of differential geometry in general relativity. It's not just the physical sciences that avail themselves of the services of mathematics either. Biology, for instance, makes extensive use of difference equations and statistics. The roles mathematics plays in these theories is also varied. (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • The explanatory power of phase spaces.Aidan Lyon & Mark Colyvan - 2008 - Philosophia Mathematica 16 (2):227-243.
    David Malament argued that Hartry Field's nominalisation program is unlikely to be able to deal with non-space-time theories such as phase-space theories. We give a specific example of such a phase-space theory and argue that this presentation of the theory delivers explanations that are not available in the classical presentation of the theory. This suggests that even if phase-space theories can be nominalised, the resulting theory will not have the explanatory power of the original. Phase-space theories thus raise problems for (...)
    Download  
     
    Export citation  
     
    Bookmark   107 citations  
  • Taking mathematical fictions seriously.Michael Liston - 1993 - Synthese 95 (3):433 - 458.
    I argue on the basis of an example, Fourier theory applied to the problem of vibration, that Field's program for nominalizing science is unlikely to succeed generally, since no nominalistic variant will provide us with the kind of physical insight into the phenomena that the standard theory supplies. Consideration of the same example also shows, I argue, that some of the motivation for mathematical fictionalism, particularly the alleged problem of cognitive access, is more apparent than real.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Inference to the best explanation and mathematical realism.Sorin Ioan Bangu - 2008 - Synthese 160 (1):13-20.
    Arguing for mathematical realism on the basis of Field’s explanationist version of the Quine–Putnam Indispensability argument, Alan Baker has recently claimed to have found an instance of a genuine mathematical explanation of a physical phenomenon. While I agree that Baker presents a very interesting example in which mathematics plays an essential explanatory role, I show that this example, and the argument built upon it, begs the question against the mathematical nominalist.
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • A Conventionalist Account of Distinctively Mathematical Explanation.Mark Povich - 2023 - Philosophical Problems in Science 74:171–223.
    Distinctively mathematical explanations (DMEs) explain natural phenomena primarily by appeal to mathematical facts. One important question is whether there can be an ontic account of DME. An ontic account of DME would treat the explananda and explanantia of DMEs as ontic structures and the explanatory relation between them as an ontic relation (e.g., Pincock 2015, Povich 2021). Here I present a conventionalist account of DME, defend it against objections, and argue that it should be considered ontic. Notably, if indeed it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • ‘A Remarkable Artifice’: Laplace, Poisson and Mathematical Purity.Bram Pel - forthcoming - Review of Symbolic Logic:1-37.
    In the early nineteenth century, a series of articles by Laplace and Poisson discussed the importance of ‘directness’ in mathematical methodology. In this thesis, we argue that their conception of a ‘direct’ proof is similar to the more widely contemplated notion of a ‘pure’ proof. More rigorous definitions of mathematical purity were proposed in recent publications by Arana and Detlefsen, as well as by Kahle and Pulcini: we compare Laplace and Poisson’s writings with these modern definitions of purity and show (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Unification and mathematical explanation in science.Sam Baron - 2021 - Synthese 199 (3-4):7339-7363.
    Mathematics clearly plays an important role in scientific explanation. Debate continues, however, over the kind of role that mathematics plays. I argue that if pure mathematical explananda and physical explananda are unified under a common explanation within science, then we have good reason to believe that mathematics is explanatory in its own right. The argument motivates the search for a new kind of scientific case study, a case in which pure mathematical facts and physical facts are explanatorily unified. I argue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematics and the world: explanation and representation.John-Hamish Heron - 2017 - Dissertation, King’s College London
    Download  
     
    Export citation  
     
    Bookmark  
  • Explicação Matemática.Eduardo Castro - 2020 - Compêndio Em Linha de Problemas de Filosofia Analítica.
    Opinionated state of the art paper on mathematical explanation. After a general introduction to the subject, the paper is divided into two parts. The first part is dedicated to intra-mathematical explanation and the second is dedicated to extra-mathematical explanation. Each of these parts begins to present a set of diverse problems regarding each type of explanation and, afterwards, it analyses relevant models of the literature. Regarding the intra-mathematical explanation, the models of deformable proofs, mathematical saliences and the demonstrative structure of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Prospects for a Monist Theory of Non-causal Explanation in Science and Mathematics.Alexander Reutlinger, Mark Colyvan & Karolina Krzyżanowska - 2020 - Erkenntnis 87 (4):1773-1793.
    We explore the prospects of a monist account of explanation for both non-causal explanations in science and pure mathematics. Our starting point is the counterfactual theory of explanation for explanations in science, as advocated in the recent literature on explanation. We argue that, despite the obvious differences between mathematical and scientific explanation, the CTE can be extended to cover both non-causal explanations in science and mathematical explanations. In particular, a successful application of the CTE to mathematical explanations requires us to (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Aesthetic Pleasure Explained.Rafael de Clercq - 2019 - Journal of Aesthetics and Art Criticism 77 (2):121-132.
    One of the oldest platitudes about beauty is that it is pleasant to perceive or experience. In this article, I take this platitude at face value and try to explain why experiences of beauty are seemingly always accompanied by pleasure. Unlike explanations that have been offered in the past, the explanation proposed is designed to suit a “realist” view on which beauty is an irreducibly evaluative property, that is, a value. In a nutshell, the explanation is that experiences of beauty (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Can we have mathematical understanding of physical phenomena?Gabriel Târziu - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (1):91-109.
    Can mathematics contribute to our understanding of physical phenomena? One way to try to answer this question is by getting involved in the recent philosophical dispute about the existence of mathematical explanations of physical phenomena. If there is such a thing, given the relation between explanation and understanding, we can say that there is an affirmative answer to our question. But what if we do not agree that mathematics can play an explanatory role in science? Can we still consider that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Psychology and Philosophy of Natural Numbers.Oliver R. Marshall - 2017 - Philosophia Mathematica (1):nkx002.
    ABSTRACT I argue against both neuropsychological and cognitive accounts of our grasp of numbers. I show that despite the points of divergence between these two accounts, they face analogous problems. Both presuppose too much about what they purport to explain to be informative, and also characterize our grasp of numbers in a way that is absurd in the light of what we already know from the point of view of mathematical practice. Then I offer a positive methodological proposal about the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mathematical Explanation in Science.Alan Baker - 2009 - British Journal for the Philosophy of Science 60 (3):611-633.
    Does mathematics ever play an explanatory role in science? If so then this opens the way for scientific realists to argue for the existence of mathematical entities using inference to the best explanation. Elsewhere I have argued, using a case study involving the prime-numbered life cycles of periodical cicadas, that there are examples of indispensable mathematical explanations of purely physical phenomena. In this paper I respond to objections to this claim that have been made by various philosophers, and I discuss (...)
    Download  
     
    Export citation  
     
    Bookmark   171 citations  
  • Why do numbers exist? A psychologist constructivist account.Markus Pantsar - forthcoming - Inquiry: An Interdisciplinary Journal of Philosophy.
    In this paper, I study the kind of questions we can ask about the existence of numbers. In addition to asking whether numbers exist, and how, I argue that there is also a third relevant question: why numbers exist. In platonist and nominalist accounts this question may not make sense, but in the psychologist account I develop, it is as well-placed as the other two questions. In fact, there are two such why-questions: the causal why-question asks what causes numbers to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mark Jay Steiner May 6, 1942 – April 6, 2020.Yemima Ben-Menahem & Carl Posy - 2023 - Philosophia Mathematica 31 (3):409-416.
    Mark Jay Steiner, a brilliant and influential philosopher of mathematics, whose interests and accomplishments extended beyond that field as well, passed away on.
    Download  
     
    Export citation  
     
    Bookmark  
  • Are There Genuine Physical Explanations of Mathematical Phenomena?Bradford Skow - 2015 - British Journal for the Philosophy of Science 66 (1):69-93.
    There are lots of arguments for, or justifications of, mathematical theorems that make use of principles from physics. Do any of these constitute explanations? On the one hand, physical principles do not seem like they should be explanatorily relevant; on the other, some particular examples of physical justifications do look explanatory. In this article, I defend the idea that physical justifications can and do explain mathematical facts. 1 Physical Arguments for Mathematical Truths2 Preview3 Mathematical Facts4 Purity5 Doubts about Purity: I6 (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Aspects of Mathematical Explanation: Symmetry, Unity, and Salience.Marc Lange - 2014 - Philosophical Review 123 (4):485-531.
    Unlike explanation in science, explanation in mathematics has received relatively scant attention from philosophers. Whereas there are canonical examples of scientific explanations, there are few examples that have become widely accepted as exhibiting the distinction between mathematical proofs that explain why some mathematical theorem holds and proofs that merely prove that the theorem holds without revealing the reason why it holds. This essay offers some examples of proofs that mathematicians have considered explanatory, and it argues that these examples suggest a (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • (1 other version)Troubles with indispensability: Applying pure mathematics in physical theory.Anthony Peressini - 1997 - Philosophia Mathematica 5 (3):210-227.
    Much of the current thought concerning mathematical ontology in volves in some way the Quine/Putnam indispensability argument. The indispensability approach needs to be more thoroughly specified, however, before substantive progress can be made in assessing it. To this end I examine in some detail the ways in which pure mathematics is applied to physical theory; such considerations give rise to three specific issues with which the indispensability approach must come to grips.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On Certainty, Change, and “Mathematical Hinges”.James V. Martin - 2022 - Topoi 41 (5):987-1002.
    Annalisa Coliva (Int J Study Skept 10(3–4):346–366, 2020) asks, “Are there mathematical hinges?” I argue here, against Coliva’s own conclusion, that there are. I further claim that this affirmative answer allows a case to be made for taking the concept of a hinge to be a useful and general-purpose tool for studying mathematical practice in its real complexity. Seeing how Wittgenstein can, and why he would, countenance mathematical hinges additionally gives us a deeper understanding of some of his latest thoughts (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Unifying statistically autonomous and mathematical explanations.Travis L. Holmes - 2021 - Biology and Philosophy 36 (3):1-22.
    A subarea of the debate over the nature of evolutionary theory addresses what the nature of the explanations yielded by evolutionary theory are. The statisticalist line is that the general principles of evolutionary theory are not only amenable to a mathematical interpretation but that they need not invoke causes to furnish explanations. Causalists object that construction of these general principles involves crucial causal assumptions. A recent view claims that some biological explanations are statistically autonomous explanations (SAEs) whereby phenomena are accounted (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Distinctively mathematical explanation and the problem of directionality: A quasi-erotetic solution.Travis L. Holmes - 2021 - Studies in History and Philosophy of Science Part A 87 (C):13-21.
    The increasing preponderance of opinion that some natural phenomena can be explained mathematically has inspired a search for a viable account of distinctively mathematical explanation. Among the desiderata for an adequate account is that it should solve the problem of directionality and the reversals of distinctively mathematical explanations should not count as members among the explanatory fold but any solution must also avoid the exclusion of genuine explanations. In what follows, I introduce and defend what I refer to as a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The because of Because Without Cause†.Daniele Molinini - 2018 - Philosophia Mathematica 26 (2):275-286.
    Marc Lange. Because Without Cause: Non-Causal Explanations in Science and Mathematics. Oxford Studies in the Philosophy of Science. Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark  
  • Confirmational holism and its mathematical (w)holes.Anthony Peressini - 2008 - Studies in History and Philosophy of Science Part A 39 (1):102-111.
    I critically examine confirmational holism as it pertains to the indispensability arguments for mathematical Platonism. I employ a distinction between pure and applied mathematics that grows out of the often overlooked symbiotic relationship between mathematics and science. I argue that this distinction undercuts the notion that mathematical theories fall under the holistic scope of the confirmation of our scientific theories.Keywords: Confirmational holism; Indispensability argument; Mathematics; Application; Science.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Comments on “Parsimony and inference to the best mathematical explanation”.Fabrice Pataut - 2016 - Synthese 193 (2):351-363.
    The author of “Parsimony and inference to the best mathematical explanation” argues for platonism by way of an enhanced indispensability argument based on an inference to yet better mathematical optimization explanations in the natural sciences. Since such explanations yield beneficial trade-offs between stronger mathematical existential claims and fewer concrete ontological commitments than those involved in merely good mathematical explanations, one must countenance the mathematical objects that play a theoretical role in them via an application of the relevant mathematical results. The (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Conservation Laws in Scientific Explanations: Constraints or Coincidences?Marc Lange - 2011 - Philosophy of Science 78 (3):333-352.
    A conservation law in physics can be either a constraint on the kinds of interaction there could be or a coincidence of the kinds of interactions there actually are. This is an important, unjustly neglected distinction. Only if a conservation law constrains the possible kinds of interaction can a derivation from it constitute a scientific explanation despite failing to describe the causal/mechanical details behind the result derived. This conception of the relation between “bottom-up” scientific explanations and one kind of “top-down” (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Indexing and Mathematical Explanation.Alan Baker & Mark Colyvan - 2011 - Philosophia Mathematica 19 (3):323-334.
    We discuss a recent attempt by Chris Daly and Simon Langford to do away with mathematical explanations of physical phenomena. Daly and Langford suggest that mathematics merely indexes parts of the physical world, and on this understanding of the role of mathematics in science, there is no need to countenance mathematical explanation of physical facts. We argue that their strategy is at best a sketch and only looks plausible in simple cases. We also draw attention to how frequently Daly and (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Applying pure mathematics.Anthony Peressini - 1999 - Philosophy of Science 66 (3):13.
    Much of the current thought concerning mathematical ontology and epistemology follows Quine and Putnam in looking to the indispensable application of mathematics in science. A standard assumption of the indispensability approach is some version of confirmational holism, i.e., that only "sufficiently large" sets of beliefs "face the tribunal of experience." In this paper I develop and defend a distinction between a pure mathematical theory and a mathematized scientific theory in which it is applied. This distinction allows for the possibility that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Existential claims and platonism.Jc Beall - 2001 - Philosophia Mathematica 9 (1):80-86.
    This paper responds to Colin Cheyne's new anti-platonist argument according to which knowledge of existential claims—claims of the form such-tmd-so exist—requires a caused connection with the given such-and-so. If his arguments succeed then nobody can know, or even justifiably believe, that acausal entities exist, in which case (standard) platonism is untenable. I argue that Cheyne's anti-platonist argument fails.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Cognitive extra-mathematical explanations.Travis Holmes - 2022 - Synthese 200 (2):1-23.
    This paper advances the view that some explanations in cognitive science are extra-mathematical explanations. Demonstrating the plausibility of this interpretation centers around certain efficient coding cases which ineliminably enlist information theoretic laws, facts and theorems to identify in-principle, mathematical constraints on neuronal information processing capacities. The explanatory structure in these cases is shown to parallel other putative instances of mathematical explanation. The upshot for cognitive mathematical explanations is thus two-fold: first, the view capably rebuts standard mechanistic objections to non-mechanistic explanation; (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation