Switch to: Citations

Add references

You must login to add references.
  1. Law without law: From observer states to physics via algorithmic information theory.Markus P. Müller - 2020 - Quantum 4:301.
    According to our current conception of physics, any valid physical theory is supposed to describe the objective evolution of a unique external world. However, this condition is challenged by quantum theory, which suggests that physical systems should not always be understood as having objective properties which are simply revealed by measurement. Furthermore, as argued below, several other conceptual puzzles in the foundations of physics and related fields point to limitations of our current perspective and motivate the exploration of an alternative: (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Respecting One’s Fellow: QBism’s Analysis of Wigner’s Friend.John B. DeBrota, Christopher A. Fuchs & Rüdiger Schack - 2020 - Foundations of Physics 50 (12):1859-1874.
    According to QBism, quantum states, unitary evolutions, and measurement operators are all understood as personal judgments of the agent using the formalism. Meanwhile, quantum measurement outcomes are understood as the personal experiences of the same agent. Wigner’s conundrum of the friend, in which two agents ostensibly have different accounts of whether or not there is a measurement outcome, thus poses no paradox for QBism. Indeed the resolution of Wigner’s original thought experiment was central to the development of QBist thinking. The (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Quantum Theory and the Limits of Objectivity.Richard Healey - 2018 - Foundations of Physics 48 (11):1568-1589.
    Three recent arguments seek to show that the universal applicability of unitary quantum theory is inconsistent with the assumption that a well-conducted measurement always has a definite physical outcome. In this paper I restate and analyze these arguments. The import of the first two is diminished by their dependence on assumptions about the outcomes of counterfactual measurements. But the third argument establishes its intended conclusion. Even if every well-conducted quantum measurement we ever make will have a definite physical outcome, this (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Can We Make Sense of Relational Quantum Mechanics?Quentin Ruyant - 2018 - Foundations of Physics 48 (4):440-455.
    The relational interpretation of quantum mechanics proposes to solve the measurement problem and reconcile completeness and locality of quantum mechanics by postulating relativity to the observer for events and facts, instead of an absolute “view from nowhere”. The aim of this paper is to clarify this interpretation, and in particular, one of its central claims concerning the possibility for an observer to have knowledge about other observer’s events. I consider three possible readings of this claim, and develop the most promising (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Einstein, Incompleteness, and the Epistemic View of Quantum States.Nicholas Harrigan & Robert W. Spekkens - 2010 - Foundations of Physics 40 (2):125-157.
    Does the quantum state represent reality or our knowledge of reality? In making this distinction precise, we are led to a novel classification of hidden variable models of quantum theory. We show that representatives of each class can be found among existing constructions for two-dimensional Hilbert spaces. Our approach also provides a fruitful new perspective on arguments for the nonlocality and incompleteness of quantum theory. Specifically, we show that for models wherein the quantum state has the status of something real, (...)
    Download  
     
    Export citation  
     
    Bookmark   81 citations  
  • (1 other version)Two dogmas about quantum mechanics.Jeffrey Bub & Itamar Pitowsky - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    We argue that the intractable part of the measurement problem -- the 'big' measurement problem -- is a pseudo-problem that depends for its legitimacy on the acceptance of two dogmas. The first dogma is John Bell's assertion that measurement should never be introduced as a primitive process in a fundamental mechanical theory like classical or quantum mechanics, but should always be open to a complete analysis, in principle, of how the individual outcomes come about dynamically. The second dogma is the (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • The View from a Wigner Bubble.Eric G. Cavalcanti - 2021 - Foundations of Physics 51 (2):1-31.
    In a recent no-go theorem [Bong et al., Nature Physics (2020)], we proved that the predictions of unitary quantum mechanics for an extended Wigner’s friend scenario are incompatible with any theory satisfying three metaphysical assumptions, the conjunction of which we call “Local Friendliness”: Absoluteness of Observed Events, Locality and No-Superdeterminism. In this paper (based on an invited talk for the QBism jubilee at the 2019 Växjö conference) I discuss the implications of this theorem for QBism, as seen from the point (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Comment on “The Notion of Locality in Relational Quantum Mechanics”.Jacques Pienaar - 2019 - Foundations of Physics 49 (12):1404-1414.
    A recent paper has given a lucid treatment of Bell’s notion of local causality within the framework of the relational interpretation of quantum mechanics. However, the authors went on to conclude that the quantum violation of Bell’s notion of local causality is no more surprising than a common cause. Here, I argue that this conclusion is unwarranted by the authors’ own analysis. On the contrary, within the framework outlined by the authors, I argue that far from saving the notion of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Relational EPR.Matteo Smerlak & Carlo Rovelli - 2007 - Foundations of Physics 37 (3):427-445.
    We study the EPR-type correlations from the perspective of the relational interpretation of quantum mechanics. We argue that these correlations do not entail any form of “non-locality”, when viewed in the context of this interpretation. The abandonment of strict Einstein realism implied by the relational stance permits to reconcile quantum mechanics, completeness, (operationally defined) separability, and locality.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Relational quantum mechanics.Carlo Rovelli - 1996 - International Journal of Theoretical Physics 35 (8):1637--1678.
    Download  
     
    Export citation  
     
    Bookmark   252 citations  
  • Relational quantum mechanics and the determinacy problem.Matthew J. Brown - 2009 - British Journal for the Philosophy of Science 60 (4):679-695.
    Carlo Rovelli's relational interpretation of quantum mechanics holds that a system's states or the values of its physical quantities as normally conceived only exist relative to a cut between a system and an observer or measuring instrument. Furthermore, on Rovelli's account, the appearance of determinate observations from pure quantum superpositions happens only relative to the interaction of the system and observer. Jeffrey Barrett ([1999]) has pointed out that certain relational interpretations suffer from what we might call the ‘determinacy problem', but (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • QBism and Relational Quantum Mechanics compared.Jacques Pienaar - 2021 - Foundations of Physics 51 (5):1-18.
    The subjective Bayesian interpretation of quantum mechanics and Rovelli’s relational interpretation of quantum mechanics are both notable for embracing the radical idea that measurement outcomes correspond to events whose occurrence is relative to an observer. Here we provide a detailed study of their similarities and especially their differences.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Comment on Healey’s “Quantum Theory and the Limits of Objectivity”.Veronika Baumann, Flavio Del Santo & Časlav Brukner - 2019 - Foundations of Physics 49 (7):741-749.
    In this comment we critically review an argument against the existence of objective physical outcomes, recently proposed by Healey [1]. We show that his gedankenexperiment, based on a combination of “Wigner’s friend” scenarios and Bell’s inequalities, suffers from the main criticism, that the computed correlation functions entering the Bell’s inequality are in principle experimentally inaccessible, and hence the author’s claim is in principle not testable. We discuss perspectives for fixing that by adapting the proposed protocol and show that this, however, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Against ”Measurement'.J. S. Bell - 1987 - In John Stewart Bell (ed.), Speakable and unspeakable in quantum mechanics: collected papers on quantum philosophy. New York: Cambridge University Press. pp. 213--231.
    Download  
     
    Export citation  
     
    Bookmark   110 citations  
  • Extending the Agent in QBism.Jacques Pienaar - 2020 - Foundations of Physics 50 (12):1894-1920.
    According to the subjective Bayesian interpretation of quantum mechanics, the instruments used to measure quantum systems are to be regarded as an extension of the senses of the agent who is using them, and quantum states describe the agent’s expectations for what they will experience through these extended senses. How can QBism then account for the fact that instruments must be calibrated before they can be used to ‘sense’ anything; some instruments are more precise than others; more precise instruments can (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Quantum relational indeterminacy.Claudio Calosi & Cristian Mariani - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 71 (C):158-169.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Relational quantum mechanics: Rovelli's world.Bas C. van Fraassen - 2010 - Discusiones Filosóficas 11 (17):13-51.
    El inspirador Relational Quantum Mechanicsde Carlo Rovelli cumple varios propósitosde manera simultánea: proporciona unanueva visión de cómo es el mundo de lamecánica cuántica y ofrece un programapara derivar el formalismo de la teoría deun conjunto de postulados simples quepertenecen al procesamiento de la información.Enesteartículopropongoquenosconcentremostotalmente en lo primero,para explorar el mundo de la mecánicacuántica tal como lo representa Rovelli.Es un mundo fascinante, en parte debidoa la dependencia de Rovelli sobre el enfoquedelateoríadelainformaciónparalosfundamentosdelamecánicacuántica,yen parte debido a que su presentaciónimplica asumir una postura en (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Open Problems in Relational Quantum Mechanics.Federico Laudisa - 2019 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 50 (2):215-230.
    The Rovelli relational interpretation of quantum mechanics is based on the assumption that the notion of observer-independent state of a physical system is to be rejected. In RQM the primary target of the theory is the analysis of the whole network of relations that may be established among quantum subsystems, and the shift to a relational perspective is supposed to address in a satisfactory way the general problem of the interpretation of quantum mechanics. Here I discuss two basic issues, that (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)Two dogmas about quantum mechanics.Jeffrey Bub & Itamar Pitowsky - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The Bundle Theory Approach to Relational Quantum Mechanics.Andrea Oldofredi - 2021 - Foundations of Physics 51 (1):1-22.
    The present essay provides a new metaphysical interpretation of Relational Quantum Mechanics (RQM) in terms of mereological bundle theory. The essential idea is to claim that a physical system in RQM can be defined as a mereological fusion of properties whose values may vary for different observers. Abandoning the Aristotelian tradition centered on the notion of substance, I claim that RQM embraces an ontology of properties that finds its roots in the heritage of David Hume. To this regard, defining what (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Notion of Locality in Relational Quantum Mechanics.P. Martin-Dussaud, C. Rovelli & F. Zalamea - 2019 - Foundations of Physics 49 (2):96-106.
    The term ‘locality’ is used in different contexts with different meanings. There have been claims that relational quantum mechanics is local, but it is not clear then how it accounts for the effects that go under the usual name of quantum non-locality. The present article shows that the failure of ‘locality’ in the sense of Bell, once interpreted in the relational framework, reduces to the existence of a common cause in an indeterministic context. In particular, there is no need to (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Relational Quantum Mechanics and Probability.M. Trassinelli - 2018 - Foundations of Physics 48 (9):1092-1111.
    We present a derivation of the third postulate of relational quantum mechanics from the properties of conditional probabilities. The first two RQM postulates are based on the information that can be extracted from interaction of different systems, and the third postulate defines the properties of the probability function. Here we demonstrate that from a rigorous definition of the conditional probability for the possible outcomes of different measurements, the third postulate is unnecessary and the Born’s rule naturally emerges from the first (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Space is blue and birds fly through it.Carlo Rovelli - unknown
    Quantum mechanics is not about 'quantum states': it is about values of physical variables. I give a short fresh presentation and update on the *relational* perspective on the theory, and a comment on its philosophical implications.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Stable Facts, Relative Facts.Carlo Rovelli & Andrea Di Biagio - 2021 - Foundations of Physics 51 (1):1-13.
    Facts happen at every interaction, but they are not absolute: they are relative to the systems involved in the interaction. Stable facts are those whose relativity can effectively be ignored. In this work, we describe how stable facts emerge in a world of relative facts and discuss their respective roles in connecting quantum theory and the world. The distinction between relative and stable facts resolves the difficulties pointed out by the no-go theorem of Frauchiger and Renner, and is consistent with (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • An Argument Against the Realistic Interpretation of the Wave Function.Carlo Rovelli - 2016 - Foundations of Physics 46 (10):1229-1237.
    Testable predictions of quantum mechanics are invariant under time reversal. But the evolution of the quantum state in time is not so, neither in the collapse nor in the no-collapse interpretations of the theory. This is a fact that challenges any realistic interpretation of the quantum state. On the other hand, this fact raises no difficulty if we interpret the quantum state as a mere calculation device, bookkeeping past real quantum events.
    Download  
     
    Export citation  
     
    Bookmark   18 citations