Switch to: Citations

Add references

You must login to add references.
  1. Interactively Illustrating the Context-Sensitivity of Aristotelian Diagrams.Lorenz6 Demey - 2015 - Modeling and Using Context 9405:331 - 345.
    This paper studies the logical context-sensitivity of Aristotelian diagrams. I propose a new account of measuring this type of context-sensitivity, and illustrate it by means of a small-scale example. Next, I turn toward a more large-scale case study, based on Aristotelian diagrams for the categorical statements with subject negation. On the practical side, I describe an interactive application that can help to explain and illustrate the phenomenon of context-sensitivity in this particular case study. On the theoretical side, I show that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A Cube of Opposition for Predicate Logic.Jørgen Fischer Nilsson - 2020 - Logica Universalis 14 (1):103-114.
    The traditional square of opposition is generalized and extended to a cube of opposition covering and conveniently visualizing inter-sentential oppositions in relational syllogistic logic with the usual syllogistic logic sentences obtained as special cases. The cube comes about by considering Frege–Russell’s quantifier predicate logic with one relation comprising categorical syllogistic sentence forms. The relationships to Buridan’s octagon, to Aristotelian modal logic, and to Klein’s 4-group are discussed.GraphicThe photo shows a prototype sculpture for the cube.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Combinatorial Bitstring Semantics for Arbitrary Logical Fragments.Lorenz6 Demey & Hans5 Smessaert - 2018 - Journal of Philosophical Logic 47 (2):325-363.
    Logical geometry systematically studies Aristotelian diagrams, such as the classical square of oppositions and its extensions. These investigations rely heavily on the use of bitstrings, which are compact combinatorial representations of formulas that allow us to quickly determine their Aristotelian relations. However, because of their general nature, bitstrings can be applied to a wide variety of topics in philosophical logic beyond those of logical geometry. Hence, the main aim of this paper is to present a systematic technique for assigning bitstrings (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Leibniz’s Logic and the “Cube of Opposition”.Wolfgang Lenzen - 2016 - Logica Universalis 10 (2-3):171-189.
    After giving a short summary of the traditional theory of the syllogism, it is shown how the square of opposition reappears in the much more powerful concept logic of Leibniz. Within Leibniz’s algebra of concepts, the categorical forms are formalized straightforwardly by means of the relation of concept-containment plus the operator of concept-negation as ‘S contains P’ and ‘S contains Not-P’, ‘S doesn’t contain P’ and ‘S doesn’t contain Not-P’, respectively. Next we consider Leibniz’s version of the so-called Quantification of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • From Blanché’s Hexagonal Organization of Concepts to Formal Concept Analysis and Possibility Theory.Didier Dubois & Henri Prade - 2012 - Logica Universalis 6 (1-2):149-169.
    The paper first introduces a cube of opposition that associates the traditional square of opposition with the dual square obtained by Piaget’s reciprocation. It is then pointed out that Blanché’s extension of the square-of-opposition structure into an conceptual hexagonal structure always relies on an abstract tripartition. Considering quadripartitions leads to organize the 16 binary connectives into a regular tetrahedron. Lastly, the cube of opposition, once interpreted in modal terms, is shown to account for a recent generalization of formal concept analysis, (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The Cube, the Square and the Problem of Existential Import.Saloua Chatti & Fabien Schang - 2013 - History and Philosophy of Logic 34 (2):101-132.
    We re-examine the problem of existential import by using classical predicate logic. Our problem is: How to distribute the existential import among the quantified propositions in order for all the relations of the logical square to be valid? After defining existential import and scrutinizing the available solutions, we distinguish between three possible cases: explicit import, implicit non-import, explicit negative import and formalize the propositions accordingly. Then, we examine the 16 combinations between the 8 propositions having the first two kinds of (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Boolean considerations on John Buridan's octagons of opposition.Lorenz Demey - 2018 - History and Philosophy of Logic 40 (2):116-134.
    This paper studies John Buridan's octagons of opposition for the de re modal propositions and the propositions of unusual construction. Both Buridan himself and the secondary literature have emphasized the strong similarities between these two octagons (as well as a third one, for propositions with oblique terms). In this paper, I argue that the interconnection between both octagons is more subtle than has previously been thought: if we move beyond the Aristotelian relations, and also take Boolean considerations into account, then (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Logical Geometries and Information in the Square of Oppositions.Hans Smessaert & Lorenz Demey - 2014 - Journal of Logic, Language and Information 23 (4):527-565.
    The Aristotelian square of oppositions is a well-known diagram in logic and linguistics. In recent years, several extensions of the square have been discovered. However, these extensions have failed to become as widely known as the square. In this paper we argue that there is indeed a fundamental difference between the square and its extensions, viz., a difference in informativity. To do this, we distinguish between concrete Aristotelian diagrams and, on a more abstract level, the Aristotelian geometry. We then introduce (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • The geometry of standard deontic logic.Alessio Moretti - 2009 - Logica Universalis 3 (1):19-57.
    Whereas geometrical oppositions (logical squares and hexagons) have been so far investigated in many fields of modal logic (both abstract and applied), the oppositional geometrical side of “deontic logic” (the logic of “obligatory”, “forbidden”, “permitted”, . . .) has rather been neglected. Besides the classical “deontic square” (the deontic counterpart of Aristotle’s “logical square”), some interesting attempts have nevertheless been made to deepen the geometrical investigation of the deontic oppositions: Kalinowski (La logique des normes, PUF, Paris, 1972) has proposed a (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • “Setting” n-Opposition.Régis Pellissier - 2008 - Logica Universalis 2 (2):235-263.
    Our aim is to show that translating the modal graphs of Moretti’s “n-opposition theory” (2004) into set theory by a suited device, through identifying logical modal formulas with appropriate subsets of a characteristic set, one can, in a constructive and exhaustive way, by means of a simple recurring combinatory, exhibit all so-called “logical bi-simplexes of dimension n” (or n-oppositional figures, that is the logical squares, logical hexagons, logical cubes, etc.) contained in the logic produced by any given modal graph (an (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Strong Boethius' thesis and consequential implication.Claudio Pizzi & Timothy Williamson - 1997 - Journal of Philosophical Logic 26 (5):569-588.
    The paper studies the relation between systems of modal logic and systems of consequential implication, a non-material form of implication satisfying "Aristotle's Thesis" (p does not imply not p) and "Weak Boethius' Thesis" (if p implies q, then p does not imply not q). Definitions are given of consequential implication in terms of modal operators and of modal operators in terms of consequential implication. The modal equivalent of "Strong Boethius' Thesis" (that p implies q implies that p does not imply (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Logical and Geometrical Distance in Polyhedral Aristotelian Diagrams in Knowledge Representation.Lorenz6 Demey & Hans5 Smessaert - 2017 - Symmetry 9 (10).
    © 2017 by the authors. Aristotelian diagrams visualize the logical relations among a finite set of objects. These diagrams originated in philosophy, but recently, they have also been used extensively in artificial intelligence, in order to study various knowledge representation formalisms. In this paper, we develop the idea that Aristotelian diagrams can be fruitfully studied as geometrical entities. In particular, we focus on four polyhedral Aristotelian diagrams for the Boolean algebra B4, viz. the rhombic dodecahedron, the tetrakis hexahedron, the tetraicosahedron (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Interaction between Logic and Geometry in Aristotelian Diagrams.Lorenz6 Demey & Hans5 Smessaert - 2016 - Diagrammatic Representation and Inference, Diagrams 9781:67 - 82.
    © Springer International Publishing Switzerland 2016. We develop a systematic approach for dealing with informationally equivalent Aristotelian diagrams, based on the interaction between the logical properties of the visualized information and the geometrical properties of the concrete polygon/polyhedron. To illustrate the account’s fruitfulness, we apply it to all Aristotelian families of 4-formula fragments that are closed under negation and to all Aristotelian families of 6-formula fragments that are closed under negation.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Logical Extensions of Aristotle’s Square.Dominique Luzeaux, Jean Sallantin & Christopher Dartnell - 2008 - Logica Universalis 2 (1):167-187.
    . We start from the geometrical-logical extension of Aristotle’s square in [6,15] and [14], and study them from both syntactic and semantic points of view. Recall that Aristotle’s square under its modal form has the following four vertices: A is □α, E is , I is and O is , where α is a logical formula and □ is a modality which can be defined axiomatically within a particular logic known as S5 (classical or intuitionistic, depending on whether is involutive (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Morphisms Between Aristotelian Diagrams.Alexander De Klerck, Leander Vignero & Lorenz Demey - 2024 - Logica Universalis 18 (1):49-83.
    In logical geometry, Aristotelian diagrams are studied in a precise and systematic way. Although there has recently been a good amount of progress in logical geometry, it is still unknown which underlying mathematical framework is best suited for formalizing the study of these diagrams. Hence, in this paper, the main aim is to formulate such a framework, using the powerful language of category theory. We build multiple categories, which all have Aristotelian diagrams as their objects, while having different kinds of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the 3d visualisation of logical relations.Hans Smessaert - 2009 - Logica Universalis 3 (2):303-332.
    The central aim of this paper is to present a Boolean algebraic approach to the classical Aristotelian Relations of Opposition, namely Contradiction and (Sub)contrariety, and to provide a 3D visualisation of those relations based on the geometrical properties of Platonic and Archimedean solids. In the first part we start from the standard Generalized Quantifier analysis of expressions for comparative quantification to build the Comparative Quantifier Algebra CQA. The underlying scalar structure allows us to define the Aristotelian relations in Boolean terms (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Aristotle’s Cubes and Consequential Implication.Claudio Pizzi - 2008 - Logica Universalis 2 (1):143-153.
    . It is shown that the properties of so-called consequential implication allow to construct more than one aristotelian square relating implicative sentences of the consequential kind. As a result, if an aristotelian cube is an object consisting of two distinct aristotelian squares and four distinct “semiaristotelian” squares sharing corner edges, it is shown that there is a plurality of such cubes, which may also result from the composition of cubes of lower complexity.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Generalization and Composition of Modal Squares of Oppositions.Claudio Pizzi - 2016 - Logica Universalis 10 (2-3):313-325.
    The first part of the paper aims at showing that the notion of an Aristotelian square may be seen as a special case of a variety of different more general notions: the one of a subAristotelian square, the one of a semiAristotelian square, the one of an Aristotelian cube, which is a construction made up of six semiAristotelian squares, two of which are Aristotelian. Furthermore, if the standard Aristotelian square is seen as a special ordered 4-tuple of formulas, there are (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)The syllogism revised.Hans Reichenbach - 1952 - Philosophy of Science 19 (1):1-16.
    The syllogism has often been criticized. Yet the theory of the syllogism cannot be omitted from logic. Even if it were not for its historical significance, its nature as a chapter of class logic assigns to it a place in any presentation of logic.The usual exposition of the theory of the syllogism, however, whether given by the use of the familiar rules of the syllogism, or by the help of diagrams, appears clumsy and lacks the lucidity of modern chapters of (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations