Switch to: Citations

Add references

You must login to add references.
  1. Superintelligence: paths, dangers, strategies.Nick Bostrom (ed.) - 2003 - Oxford University Press.
    The human brain has some capabilities that the brains of other animals lack. It is to these distinctive capabilities that our species owes its dominant position. Other animals have stronger muscles or sharper claws, but we have cleverer brains. If machine brains one day come to surpass human brains in general intelligence, then this new superintelligence could become very powerful. As the fate of the gorillas now depends more on us humans than on the gorillas themselves, so the fate of (...)
    Download  
     
    Export citation  
     
    Bookmark   308 citations  
  • Dermatologist-level classification of skin cancer with deep neural networks.Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M. Blau & Sebastian Thrun - 2017 - Nature 542 (7639):115-118.
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • The Trouble with Algorithmic Decisions: An Analytic Road Map to Examine Efficiency and Fairness in Automated and Opaque Decision Making.Tal Zarsky - 2016 - Science, Technology, and Human Values 41 (1):118-132.
    We are currently witnessing a sharp rise in the use of algorithmic decision-making tools. In these instances, a new wave of policy concerns is set forth. This article strives to map out these issues, separating the wheat from the chaff. It aims to provide policy makers and scholars with a comprehensive framework for approaching these thorny issues in their various capacities. To achieve this objective, this article focuses its attention on a general analytical framework, which will be applied to a (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • How the machine ‘thinks’: Understanding opacity in machine learning algorithms.Jenna Burrell - 2016 - Big Data and Society 3 (1):205395171562251.
    This article considers the issue of opacity as a problem for socially consequential mechanisms of classification and ranking, such as spam filters, credit card fraud detection, search engines, news trends, market segmentation and advertising, insurance or loan qualification, and credit scoring. These mechanisms of classification all frequently rely on computational algorithms, and in many cases on machine learning algorithms to do this work. In this article, I draw a distinction between three forms of opacity: opacity as intentional corporate or state (...)
    Download  
     
    Export citation  
     
    Bookmark   208 citations  
  • The ethics of algorithms: mapping the debate.Brent Mittelstadt, Patrick Allo, Mariarosaria Taddeo, Sandra Wachter & Luciano Floridi - 2016 - Big Data and Society 3 (2):2053951716679679.
    In information societies, operations, decisions and choices previously left to humans are increasingly delegated to algorithms, which may advise, if not decide, about how data should be interpreted and what actions should be taken as a result. More and more often, algorithms mediate social processes, business transactions, governmental decisions, and how we perceive, understand, and interact among ourselves and with the environment. Gaps between the design and operation of algorithms and our understanding of their ethical implications can have severe consequences (...)
    Download  
     
    Export citation  
     
    Bookmark   217 citations  
  • New developments in the philosophy of AI.Vincent C. Müller - 2016 - In Vincent C. Müller (ed.), Fundamental Issues of Artificial Intelligence. Cham: Springer.
    The philosophy of AI has seen some changes, in particular: 1) AI moves away from cognitive science, and 2) the long term risks of AI now appear to be a worthy concern. In this context, the classical central concerns – such as the relation of cognition and computation, embodiment, intelligence & rationality, and information – will regain urgency.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Future progress in artificial intelligence: A survey of expert opinion.Vincent C. Müller & Nick Bostrom - 2016 - In Vincent C. Müller (ed.), Fundamental Issues of Artificial Intelligence. Cham: Springer. pp. 553-571.
    There is, in some quarters, concern about high–level machine intelligence and superintelligent AI coming up in a few decades, bringing with it significant risks for humanity. In other quarters, these issues are ignored or considered science fiction. We wanted to clarify what the distribution of opinions actually is, what probability the best experts currently assign to high–level machine intelligence coming up within a particular time–frame, which risks they see with that development, and how fast they see these developing. We thus (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Bias in algorithmic filtering and personalization.Engin Bozdag - 2013 - Ethics and Information Technology 15 (3):209-227.
    Online information intermediaries such as Facebook and Google are slowly replacing traditional media channels thereby partly becoming the gatekeepers of our society. To deal with the growing amount of information on the social web and the burden it brings on the average user, these gatekeepers recently started to introduce personalization features, algorithms that filter information per individual. In this paper we show that these online services that filter information are not merely algorithms. Humans not only affect the design of the (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • The ethics of big data: current and foreseeable issues in biomedical contexts.Brent Daniel Mittelstadt & Luciano Floridi - 2016 - Science and Engineering Ethics 22 (2):303–341.
    The capacity to collect and analyse data is growing exponentially. Referred to as ‘Big Data’, this scientific, social and technological trend has helped create destabilising amounts of information, which can challenge accepted social and ethical norms. Big Data remains a fuzzy idea, emerging across social, scientific, and business contexts sometimes seemingly related only by the gigantic size of the datasets being considered. As is often the case with the cutting edge of scientific and technological progress, understanding of the ethical implications (...)
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • Three naive Bayes approaches for discrimination-free classification.Toon Calders & Sicco Verwer - 2010 - Data Mining and Knowledge Discovery 21 (2):277-292.
    Download  
     
    Export citation  
     
    Bookmark   9 citations